[1] Lim, B. T., DeMan, J. M., DeMan, L., & Buzzell, R. I. (1990). Yield and quality of tofu as affected by soybean and soymilk characteristics. Calcium sulfate coagulant. Journal of Food Science, 55(4), 1088-1092.
[2] Hesari, J., Ehsani, M. R., Mosavi, M. A., & McSweeney, P. L. (2007). Proteolysis in ultra‐filtered and conventional Iranian white cheese during ripening. International Journal of Dairy Technology, 60(3), 211-220.
[3] Radojevi, I. D., Stankovi, M. S., Stefanovi, O. D., & Topuzovi, M. D. (2011). Anti-Aspergillus properties of different extracts from selected plants. African Journal of Microbiology Research, 5(23), 3986-3990.
[4] Fallahi, F., & Madani, M. (2014). Study of contamination of different dairy products distributed in Isfahan to saprophytic fungi. Biological Journal of Microorganism, 3(11), 59-70.
[5] Havelaar, A. H., Brul, S., De Jong, A., De Jonge, R., Zwietering, M. H., & Ter Kuile, B. H. (2010). Future challenges to microbial food safety. International Journal of Food Microbiology, 139, S79-S94.
[6] Gould, G. W. (2001). New processing technologies: an overview. Proceedings of the Nutrition Society, 60(4), 463-474.
[7] Sampedro, F., Rodrigo, M., Martinez, A., Rodrigo, D., & Barbosa-Cánovas, G. V. (2005). Quality and safety aspects of PEF application in milk and milk products. Critical Reviews in Food Science and Nutrition, 45(1), 25-47.
[8] Alexander, P., Brown, C., Arneth, A., Finnigan, J., Moran, D., & Rounsevell, M. D. (2017). Losses, inefficiencies and waste in the global food system. Agricultural Systems, 153, 190-200.
[9] Coutinho, N. M., Silveira, M. R., Rocha, R. S., Moraes, J., Ferreira, M. V. S., Pimentel, T. C., & Cruz, A. G. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science & Technology, 74, 56-68.
[10] Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control, 47, 451-456.
[11] Yong, H. I., Kim, H. J., Park, S., Kim, K., Choe, W., Yoo, S. J., & Jo, C. (2015). Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Research International, 69, 57-63.
[12] Aslan, Y. (2016). The Effect of dielectric barrier discharge plasma treatment on the microorganisms found in raw Cow’s milk. Türkiye Tarımsal Araştırmalar Dergisi, 3(2), 169-173.
[13] Heydarian, A., Ahmadi, E., Dashti, F., & Normohammadi, A. (2022). Evaluation of mechanical and chemical parameters of Okra with chitosan coating in nano packaging films and atmospheric modified conditions. Journal of Agricultural Machinery, 12(4), 600-612.
[14] Lee, H. J., Jung, S., Jung, H. S., Park, S. H., Choe, W. H., Ham, J. S., & Jo, C. (2012). Evaluation of a dielectric barrier discharge plasma system for inactivating pathogens on cheese slices. Journal of Animal Science and Technology, 54(3), 191-198.
[15] Garrido, J. I., Lozano, J. E., & Genovese, D. B. (2015). Effect of formulation variables on rheology, texture, colour, and acceptability of apple jelly: Modelling and optimization. LWT-Food Science and Technology, 62(1), 325-332.
[16] Nateghi, L., Roohinejad, S., Totosaus, A., Mirhosseini, H., Shuhaimi, M., Meimandipour, A., & Abd-Manap, M. Y. (2012). Optimization of textural properties and formulation of reduced fat Cheddar cheeses containing fat replacers. Journal of Food, Agriculture and Environment, 10(2), 46-54.
[17] Nourmohammadi, A., Ahmadi, E., & Heshmati, A. (2021). Optimization of physicochemical, textural, and rheological properties of sour cherry jam containing stevioside by using response surface methodology. Food Science & Nutrition, 9(5), 2483-2496.
[18] Azari-Anpar, M., Payeinmahali, H., Daraei Garmakhany, A., & Sadeghi Mahounak, A. (2017). Physicochemical, microbial, antioxidant, and sensory properties of probiotic stirred yoghurt enriched with Aloe vera foliar gel. Journal of Food Processing and Preservation, 41(5), e13209.
[19] Lobato-Calleros, C., Sosa-Pérez, A., Rodríguez-Tafoya, J., Sandoval-Castilla, O., Pérez-Alonso, C., & Vernon-Carter, E. J. (2008). Structural and textural characteristics of reduced-fat cheese-like products made from W1/O/W2 emulsions and skim milk. LWT-Food Science and Technology, 41(10), 1847-1856.
[20] Rashidi, H., Mazaheri-Tehrani, M., Razavi, S. M. A., & Ghods-Rohany, M. (2015). Improving textural and sensory characteristics of low-fat UF Feta cheese Mmade with fat replacers. Journal of Agricultural Science and Technology, 17, 121-132.
[21] Jia, R., Zhang, F., Song, Y., Lou, Y., Zhao, A., Liu, Y., & Wang, B. (2021). Physicochemical and textural characteristics and volatile compounds of semihard goat cheese as affected by starter cultures. Journal of Dairy Science, 104(1), 270-280.
[22] Mohsenin, N. N. (1968). Physical properties of plant and animal materials.
[23] Madsen, J. S., & Ardö, Y. (2001). Exploratory study of proteolysis, rheology and sensory properties of Danbo cheese with different fat contents. International Dairy Journal, 11(4-7), 423-431.
[24] Georgala, A., Moschopoulou, E., Aktypis, A., Massouras, T., Zoidou, E., Kandarakis, I., & Anifantakis, E. (2005). Evolution of lipolysis during the ripening of traditional Feta cheese. Food Chemistry, 93(1), 73-80.