[1] Fotouhi Ghazvini, R. & Fattahi Moghadam, J. (2006). Citrus Growing in Iran. (2th ed.), Guilan University Press, 305p.
[2] FAO. (2011). Citrus fruit – fresh and processed, annual statistics, 2009. Commodities and Trade Division, FAO.
[3] Anonymous (2019) Statistical book of Agricultural of Iran. Iranian Statistical Centre, Tehran.
[4] Adelkhani, A., Beheshti, B., Minaei, S. & Javadikia, H. )2016(. Taste determination of Thompson orange using image processing based on ANFIS and ANN-GA methods. Journal of Food Science and Technology, 13(56), 45-55. (In Farsi)
[5] Majumdar, S. & Jayas, D.S. (2000). Classification of cereal grains using machine vision. I. Morphology models. Transactions of the ASAE, 43(6), 1669-1675.
[6] Dowlati, M., Mohtasebi, S. S. & M. de-la Guardia, M. (2012). Application of machine-vision techniques to fish-quality assessment. TRAC- Trends in Analytical Chemistry, 40, 168-179.
[7] Dowlati, M., Mohtasebi, S. S., Omid, M., Razavi, S. H., Jamzad, M. & De La Guardia, M. (2013). Freshness assessment of gilthead sea bream (Sparus aurata) by machine vision based on gill and eye color changes. Journal of Food Engineering. 119(2), 277-287.
[8] Butz, P., Hofmann, C. & Tauscher, B. (2005). Recent developments in non-invasive techniques for fresh fruit and vegetable internal quality analysis. Journal of Food Science, 70, 131–134.
[9] Multag, W.K., Ali, S.K., Aydam, Z.M. & Taher, B. H. (2020). Feature extraction methods: a review. Journal of Physics: Conference Series, 1591: 012028.
[10] Zare-Chahoki, M.A. (2011) Methods of Multivariate Analysis with SPSS. Publications of Faculty of Natural Resources, Tehran University, Tehran.
[11] Al-Saif, A.M., Abdel-Sattar, M., Aboukarima, A.M. & Eshra, D.H. (2021). Application of a multilayer perceptron artificial neural network for identification of peach cultivars based on physical characteristics. PeerJ, DOI 10.7717/peerj.11529.
[12] Li, Y., Feng, X., Liu, Y. & Han, X. (2021). Apple quality identification and classification by image processing based on convolutional neural networks. Scientific Reports, 11(1): 1-15.
[13] Kondo, N., Ahmad, U., Monta, M. & Murase, H. (2000). Machine vision based quality evaluation of Iyocan orange fruit using neural network. Computers and Electronics in Agriculture, 29, 135-147.
[14] Mendoza, F. & Aguilera, J.M. (2004). Application of image analysis for classification of ripening bananas. Journal of Food Science, 69, 471-477.
[15] Kavdir, I. & Guyer, D.E. (2002). Apple sorting using Artificial Neural Network and Special imaging. Trans. ASAE, 45, 1995–2005.
[16] Jafari, A., Fazayeli, A. & Zarezadeh, M.R. (2014). Estimation of orange skin thickness based on visual texture coarseness. Biosystems Engineering, 117, 73-82.
[17] Masoudi; H. & Rohani, A. (2017). Mass and volume prediction of orange fruit (Dezful Local Variety) using MLP neural networks. Journal of Agricultural Engineering, 39(2), 133-142.
[18] Neelamma, K.P., Virendra, S.M. & Ravi, M.Y. (2011). Color and texture based identification and classification of food Grains using different Color Models and Haralick features. International Journal on Computer Science and Engineering, 12(3), 3669-3680.
[19] Zhang, M.S., Ustin, L., Rejmankova, E. & Sanderson, E.W. (1997). Monitoring pacific coast salt marshes using remote sensing. Ecological Applications, 73, 1039-1053.
[20] Hunt, R.W.G. (1991). Measuring color (2th ed.), New York: Ellis Horwood.
[21] Golpour, I., Amiri Parian, J., Amiri Chayjan, R. & Khazaei, J. (2015). Recognition of paddy, brown rice and white rice cultivars based on textural features of images and artificial neural network. Journal of Agricultural Machinery, 5(1), 73-81.
[22] AOAC. (1995). Official method of analysis of AOAC international, 16th edition. The United States of America, DC.
[23] Roe, J.H. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry, 212, 335-343.
[24] Momenzadeh, L., Zomorodian, A. & Mowla, A. (2012). Applying artificial neural network for drying time prediction of green pea in a microwave assisted fluidized bed dryer. Journal of Agricultural Science and Technology, 14: 513-522
[25] Hernandez-Perez, J.A., Garcıa-Alvarado, M.A., Trystram, G. & Heyd, B. (2004). Neural networks for the heat and mass transfer prediction during drying of cassava and mango. Innovative Food Science and Emerging Technologies, 5, 57–64.
[26] Erenturk, S. & Erenturk, S. (2007). Comparison of genetic algorithm and neural network approaches for the drying process of carrot. Journal of Food Engineering, 78, 905-1884.
[27] Khoshtaghaza, M.H., Amiri-Chayjan, R., Montazer, G.H. & Minaei, S. (2007) Production of head rice yield in fixed bed drying using artificial neural network. Journal of Agricultural Engineering Research, 8(2), 135-156. (In Farsi)