بررسی اثر نوع روغن و نسبت محصول به روغن بر توزیع دما، افت رطوبت و جذب روغن در طی فرآیند سرخ کردن قطعات سیب‌زمینی

نویسندگان
1 مدرس گروه علوم و صنایع غذائی، دانشکده کشاورزی، دانشگاه کردستان
2 استاد گروه علوم و صنایع غذائی، دانشکده کشاورزی، دانشگاه تبریز
چکیده
در فرآیند سرخ کردن بسیاری از تغییراتی که روی می‌دهد تابع نوع روغن و نسبت محصول به روغن (بار سرخ کردن) می‌باشند و توزیع یکنواخت دمای روغن در نقاط مختلف سرخ­کن با توجه به سرخ‌شدن یکنواخت قطعات سیب‌زمینی‌ حائز اهمیت می‌باشد. بنابراین، با پایش نحوه توزیع دما، روغن و رطوبت در محصول با گذشت زمان می­توان فرآیند سرخ‌کردن را به‌طور مؤثرتری کنترل نمود و به درک عمیق‌تری از این فرآیند پیچیده رسید. بنابراین هدف تحقیق حاضر بررسی اثر سه نوع روغن (آفتابگردان، سویا و کانولا)، سه نوع بار سرخ کردن (1:20، 1:15 و 1:10 کیلوگرم سیب زمینی به لیتر روغن) و چهار موقعیت مختلف در سرخ‌کن بر توزیع دما در سرخ‌کن و سیب‌زمینی، محتوای رطوبت و میزان روغن جذب ‌شده در قطعات سیب‌زمینی حین سرخ کردن در 4 فاصله زمانی 90، 180، 270 و 360 ثانیه بود. آنالیز آماری داده‌ها نشان داد که بار سرخ‌کردن بر افت رطوبت و جذب روغن اثر معنی‌داری داشت در حالیکه برای نوع روغن و موقعیت سیب‌زمینی در سرخ‌کن اثر معنی‌دار مشاهده نشد. با افزایش بار سرخ‌کردن میزان جذب روغن بیشتر و رطوبت نهایی سیب‌زمینی‌ها افزایش یافت. نتایج به‌دست‌آمده حاکی از آن بود که دمای مرکز سیب‌زمینی تحت تأثیر نوع روغن و بار سرخ کردن قرار نگرفت و دمای مرکز در کل تیمارها در حدود 95-96 درجه سلسیوس تخمین ‌زده شد. برخلاف دمای مرکز، دمای سطح تحت تأثیر نسبت سیب‌زمینی به روغن قرار گرفت و با افزایش بار سرخ‌کردن دمای سطح افزایش یافت. با توجه به نتایج به دست آمده تحقیق حاضر نشان داد برای کاهش روغن جذب ‌شده حتماً باید از نسبت مناسب سیب‌زمینی به روغن استفاده گردد در حالیکه نوع روغن و مکان سیب‌زمینی در سرخ‌کن تأثیر قابل ملاحظه ایی بر میزان روغن جذب‌ شده نداشت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of oil type and potato to oil ratio on temperature distribution, moisture loss and oil absorption during the frying process of french fries

نویسندگان English

Abdurrahman qaderi 1
Jalal Dehghannya 2
Babak Ghanbarzadeh 2
1 Department of Food Science and Technology, University of Kurdistan, Sanadaj, Iran
2 a Department of Food Science and Technology, University of Tabriz, Tabriz 51666-16471, Iran
چکیده English

In the frying process, many changes that occur affected by type of oil and frying load and the uniform distribution of oil temperature is important in different parts of the fryer due to the uniform frying of food. Therefore, with monitoring the distribution of temperature, oil and miosture in the product over time, the frying process can be controlled more effectively and reached a deeper understanding of this complex process. Hence, the present study aimed to investigate the effect of oil type (sunflower, soy and canola) and frying load (1/20, 1/15 and 1/10 kg of potatoes to oil) on the frying process in four different positions of potatoes inside the fryer. The statistical analysis of the data showed that frying load has a significant effect on the loss of moisture and oil absorption, while the potato position in the fryer has not significant effect. By increasing the frying load, the amount of oil absorption and the final moisture of potatoes increased. The results indicated that the temperature of the potato center was not affected by the type of oil and frying load and the center temperature was estimated about 96-95 ℃. Unlike the center temperature, the surface temperature was affected by the ratio of potato to oil and increased by increasing the frying load.

کلیدواژه‌ها English

frying
Oil type
Potato to oil ratio
Oil absorption
[1] O.-D. Baik and G. S. Mittal, "Heat and moisture transfer and shrinkage simulation of deep-fat tofu frying," Food Research International, vol. 38, no. 2, pp. 183-191, 2005.
[2] A. Y. Khaled, S. A. Aziz, and F. Z. Rokhani, "Capacitive sensor probe to assess frying oil degradation," Information Processing in Agriculture, vol. 2, no. 2, pp. 142-148, 9// 2015, doi: http://doi.org/10.1016/j.inpa.2015.07.002.
[3] E. Choe and D. Min, "Chemistry of deep‐fat frying oils," Journal of food science, vol. 72, no. 5, pp. R77-R86, 2007.
[4] P. J. Fellows, Food processing technology: principles and practice, fourth ed. Elsevier, 2017.
[5] K. K. Bhat and S. Bhattacharya, "Deep fat frying characteristics of chickpea flour suspensions," International Journal of Food Science & Technology, vol. 36, no. 5, pp. 499-507, 2001, doi: 10.1046/j.1365-2621.2001.00455.x.
[6] B. Innawong, "Improving fried product and frying oil quality using nitrogen gas in a pressure frying system," Virginia Tech, 2001.
[7] A.-M. Ziaiifar, "Oil absorption during deep-fat frying: mechanisms and important factors," AgroParisTech, 2008.
[8] L. J. Hubbard and B. E. Farkas, "A method for determining the convective heat transfer coefficient during immersion frying," Journal of Food Process Engineering, vol. 22, no. 3, pp. 201-214, 1999.
[9] J. Rosseli, "Industrial frying process," Grasas y Aceites, vol. 49, no. 3-4, pp. 282-295, 1998.
[10] M. Mellema, "Mechanism and reduction of fat uptake in deep-fat fried foods," Trends in Food Science & Technology, vol. 14, no. 9, pp. 364-373, 2003.
[11] Y. Chen and R. Moreira, "Modelling of a batch deep-fat frying process for tortilla chips," Food and Bioproducts Processing, vol. 75, no. 3, pp. 181-190, 1997.
[12] S. G. Sumnu and S. Sahin, Advances in deep-fat frying of foods. CRC Press, 2008.
[13] J. Podmore, "Fats in bakery and kitchen products," in Fats in food products: Springer, 1994, pp. 213-253.
[14] E. Kalogianni, T. Karapantsios, and R. Miller, "Effect of repeated frying on the viscosity, density and dynamic interfacial tension of palm and olive oil," Journal of Food Engineering, vol. 105, no. 1, pp. 169-179, 2011.
[15] E. P. Kalogianni, C. Karastogiannidou, and T. D. Karapantsios, "Effect of potato presence on the degradation of extra virgin olive oil during frying," International journal of food science & technology, vol. 45, no. 4, pp. 765-775, 2010.
[16] J. Rahimi and M. O. Ngadi, "Inter-particle space fractions in fried batter coatings as influenced by batter formulation and pre-drying time," LWT-Food Science and Technology, vol. 57, no. 2, pp. 486-493, 2014.
[17] E. Troncoso and F. Pedreschi, "Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices," LWT-Food Science and Technology, vol. 42, no. 6, pp. 1164-1173, 2009.
[18] D. Dana and I. S. Saguy, "Mechanism of oil uptake during deep-fat frying and the surfactant effect-theory and myth," Advances in Colloid and Interface Science, vol. 128, pp. 267-272, 2006.
[19] A. S. Mujumdar, Handbook of industrial drying. CRC press, 2014.
[20] P. Bouchon and D. Pyle, "Modelling oil absorption during post-frying cooling: II: solution of the mathematical model, model testing and simulations," Food and Bioproducts Processing, vol. 83, no. 4, pp. 261-272, 2005.
[21] AOAC, "Official Methods of Analysis of AOAC International," 18th ed: AOAC Int. Gaithersburg, MD, 2007, pp. -.
[22] S. Khalilian, O. I. Mba, and M. O. Ngadi, "g-Frying of eggplant (Solanum melongena L.)," Journal of Food Engineering, vol. 293, p. 110358, 2021.
[23] F. Roshani, S. Movahhed, and H. A. Chenarbon, "Modelling Shrinkage in Deep-Fried Satina Potato Slices Pretreated with Ultrasound," Potato Research, vol. 64, no. 2, pp. 257-265, 2021.
[24] G. Carrieri, M. Anese, B. Quarta, M. V. De Bonis, and G. Ruocco, "Evaluation of acrylamide formation in potatoes during deep-frying: The effect of operation and configuration," Journal of Food Engineering, vol. 98, no. 2, pp. 141-149, 2010, doi: 10.1016/j.jfoodeng.2009.12.011.
[25] A. Cebula, "A Device for Measuring the Heat Flux on the Cylinder Outer Surface in a Cross-flow," Procedia Engineering, vol. 157, pp. 264-270, 2016.
[26] C. Southern, M. Farid, X. Chen, B. Howard, and L. Eyres, "Thermal validation of a simple moving boundary model to determine the frying time of a thin potato crisp," Heat and mass transfer, vol. 36, no. 5, pp. 407-412, 2000.
[27] M. Farid and X. Chen, "The analysis of heat and mass transfer during frying of food using a moving boundary solution procedure," Heat and Mass transfer, vol. 34, no. 1, pp. 69-77, 1998.
[28] A. Farinu and O.-D. Baik, "Convective mass transfer coefficients in finite element simulations of deep fat frying of sweetpotato," Journal of Food Engineering, vol. 89, no. 2, pp. 187-194, 2008, doi: 10.1016/j.jfoodeng.2008.04.024.
[29] J. S. Lioumbas, M. Kostoglou, and T. D. Karapantsios, "Surface water evaporation and energy components analysis during potato deep fat frying," Food Research International, vol. 48, no. 1, pp. 307-315, 2012.
[30] O. Vitrac, G. Trystram, and A.-L. Raoult-Wack, "Continuous measurement of convective heat flux during deep-frying: validation and application to inverse modeling," Journal of Food Engineering, vol. 60, no. 2, pp. 111-124, 2003.
[31] P. Shallal, P. Rajaei, and S. Asadollahi, "The effect of kind and temperature of oil used in deep frying on the amount of oil uptake," International Journal of Biosciences (IJB), vol. 5, no. 12, pp. 331-341, 2014.
[32] J. Kim, D. N. Kim, S. H. Lee, S.-H. Yoo, and S. Lee, "Correlation of fatty acid composition of vegetable oils with rheological behaviour and oil uptake," Food chemistry, vol. 118, no. 2, pp. 398-402, 2010.
[33] A. Kita and G. Lisińska, "The influence of oil type and frying temperatures on the texture and oil content of French fries," Journal of the Science of Food and Agriculture, vol. 85, no. 15, pp. 2600-2604, 2005.
[34] M. Durán, F. Pedreschi, P. Moyano, and E. Troncoso, "Oil partition in pre-treated potato slices during frying and cooling," Journal of food Engineering, vol. 81, no. 1, pp. 257-265, 2007.
[35] E. Pinthus, P. Weinberg, and I. Saguy, "Oil uptake in deep fat frying as affected by porosity," Journal of Food Science, vol. 60, no. 4, pp. 767-769, 1995.