[1] Ghorbani, M. (2008). The efficiency of saffron’s marketing channel in Iran. World Applied Sciences Journal, 4(4), 523–527.
[2] Serrano‐Díaz, J., Sánchez, A. M., Maggi, L., Martínez‐Tomé, M., García‐Diz, L., Murcia, M. A., & Alonso, G. L. (2012). Increasing the applications of Crocus sativus flowers as natural antioxidants. Journal of Food Science, 77(11), C1162–C1168.
[3] Rubio-Moraga, Á., Gómez-Gómez, L., Trapero, A., Castro-Díaz, N., & Ahrazem, O. (2013). Saffron corm as a natural source of fungicides: The role of saponins in the underground. Industrial Crops and Products, 49, 915–921.
[4] Sawyer, J., & Mallarino, A. (2007). Nutrient removal when harvesting corn stover.
[5] Ahmadi, K. Ebadzadeh, H. Hatami, F. Hosseinpour, R. Abdshah, H. (2019). Agricultural statistics of 2018. First edition. Information and Communication Technology Center of the Ministry of Agricultural Jihad. pages 158.
[6] Smith, G. M. (2003). Film structure and the emotion system. Cambridge University Press.
[7] Perumal, A. B., Nambiar, R. B., Sellamuthu, P. S., Sadiku, E. R., Li, X., & He, Y. (2022). Extraction of cellulose nanocrystals from areca waste and its application in eco-friendly biocomposite film. Chemosphere, 287, 132084.
[8] Razali, N. A. M., Mohd Sohaimi, R., Othman, R. N. I. R., Abdullah, N., Demon, S. Z. N., Jasmani, L., ... & Halim, N. A. (2022). Comparative study on extraction of cellulose fiber from rice straw waste from chemo-mechanical and pulping method. Polymers, 14(3), 387.
[9] Fronza, P., Costa, A. L. R., Franca, A. S., & de Oliveira, L. S. (2023). Extraction and characterization of starch from cassava peels. Starch‐Stärke, 75(3-4), 2100245.
[10] AOAC. 2005. Official methods of analysis (18th ed.) Arlington, VA: Association of Official Analytical Chemists.
[11] Zeković, Z., Vidović, S., Vladić, J., Radosavljević, R., Cvejin, A., Elgndi, M. A., & Pavlić, B. (2014). Optimization of subcritical water extraction of antioxidants from Coriandrum sativum seeds by response surface methodology. The Journal of Supercritical Fluids, 95, 560-566.
[12] Niazmand, R., & Razavizadeh, B. M. (2021). Ferula asafoetida: chemical composition, thermal behavior, antioxidant and antimicrobial activities of leaf and gum hydroalcoholic extracts. Journal of Food Science and Technology, 58(6), 2148–2159.
[13] Sánchez-Vioque, R., Rodríguez-Conde, M. F., Reina-Ureña, J. V, Escolano-Tercero, M. A., Herraiz-Peñalver, D., & Santana-Méridas, O. (2012). In vitro antioxidant and metal chelating properties of corm, tepal and leaf from saffron (Crocus sativus L.). Industrial Crops and Products, 39, 149–153.
[14] Fu, Z., Wang, L., Li, D., Wei, Q., & Adhikari, B. (2011). Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films. Carbohydrate Polymers, 86(1), 202–207.
[15] Razmavar, S., Abdulla, M. A., Ismail, S. B., & Hassandarvish, P. (2014). Antibacterial activity of leaf extracts of Baeckea frutescens against methicillin‐resistant Staphylococcus aureus. BioMed Research International, 2014(1), 521287.
[16] Niazmand, R., Razavizadeh, B. M., & Sabbagh, F. (2022). Simulating release model and antimicrobial efficiency of LDPE film carrying ferula asafetida leaf and gum extracts. Polymer Bulletin, 79(2), 1151–1174.
[17] Aprianita, A., Purwandari, U., Watson, B., & Vasiljevic, T. (2009). Physico-chemical properties of flours and starches from selected commercial tubers available in Australia. International Food Research Journal, 16(4), 507–520.
[18] Joshi, M., Aldred, P., McKnight, S., Panozzo, J. F., Kasapis, S., Adhikari, R., & Adhikari, B. (2013). Physicochemical and functional characteristics of lentil starch. Carbohydrate Polymers, 92(2), 1484–1496.
[19] Hoover, R., & Ratnayake, W. S. (2001). Determination of total amylose content of starch. Current Protocols in Food Analytical Chemistry, 1, E2-3.
[20] Karimi, M., Fathi, M., Sheykholeslam, Z., Sahraiyan, B., & Naghipoor, F. (2012). Effect of different processing parameters on quality factors and image texture features of bread. J Bioproces Biotech, 2, 2–7.
[21] Fukushima, R. S., & Hatfield, R. D. (2001). Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. Journal of Agricultural and Food Chemistry, 49(7), 3133–3139.
[22] Arapoglou, D., Varzakas, T., Vlyssides, A., & Israilides, C. (2010). Ethanol production from potato peel waste (PPW). Waste Management, 30(10), 1898–1902.
[23] Dinand, E., Vignon, M., Chanzy, H., & Heux, L. (2002). Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→ cellulose II. Cellulose, 9, 7–18.
[24] Chen, D., Lawton, D., Thompson, M. R., & Liu, Q. (2012). Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydrate Polymers, 90(1), 709–716.
[25] Mondal, M. I. H., Yeasmin, M. S., & Rahman, M. S. (2015). Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. International Journal of Biological Macromolecules, 79, 144–150.
[26] Khullar, R., Varshney, V. K., Naithani, S., Heinze, T., & Soni, P. L. (2005). Carboxymethylation of cellulosic material (average degree of polymerization 2600) isolated from cotton (Gossypium) linters with respect to degree of substitution and rheological behavior. Journal of applied polymer science, 96 (4), 1477-1482.
[27] ASTM. 1973. Standard Methods of Testing Sodium Carboxymethyl Cellulose. D1439-72. pp. 104-113.
[28] Ghorbanpour, M., Moghimi, M., & Lotfiman, S. (2017). Silica-supported copper oxide nanoleaf with antimicrobial activity against Escherichia coli. Journal of Water and Environmental Nanotechnology, 2(2), 112–117.
[29] Chrungoo, N. K., & Farooq, S. (1985). Correlative changes in carbohydrate content and starch hydrolysing enzymes in corms of saffron crocus (Crocus sativus L.) during dormancy and sprouting. Biochemie und Physiologie der Pflanzen, 180(1), 55-61.
[30] Handa, S. S. (2008). An overview of extraction techniques for medicinal and aromatic plants. Extraction Technologies for Medicinal and Aromatic Plants, 1(1), 21–40.
[31] E Garcia-Vaquero, M., Rajauria, G., & Tiwari, B. (2020). Conventional extraction techniques: Solvent extraction. In Sustainable seaweed technologies (pp. 171-189). Elsevier.
[32] Wang, Y., Liu, W., Zhang, L., & Hou, Q. (2019). Characterization and comparison of lignin derived from corncob residues to better understand its potential applications. International Journal of Biological Macromolecules, 134, 20–27.
[33] Lee, B.-R., Kim, K.-Y., Jung, W.-J., Avice, J.-C., Ourry, A., & Kim, T.-H. (2007). Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). Journal of Experimental Botany, 58(6), 1271–1279.
[34] Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Neto, A. R. S., Marques, A. C. P., Marconcini, J. M., Mattoso, L. H. C., Medeiros, E. S., & Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458.
[35] Rivas, B., Domınguez, J. M., Domınguez, H., & Parajó, J. C. (2002). Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme and Microbial Technology, 31(4), 431–438.
[36] Machinet, G. E., Bertrand, I., Barrière, Y., Chabbert, B., & Recous, S. (2011). Impact of plant cell wall network on biodegradation in soil: role of lignin composition and phenolic acids in roots from 16 maize genotypes. Soil Biology and Biochemistry, 43(7), 1544–1552.
[37] Shariff, A., Aziz, N. S. M., Ismail, N. I., & Abdullah, N. (2016). Corn cob as a potential feedstock for slow pyrolysis of biomass. J. Phys. Sci, 27(2), 123–137.
[38] Ogunjobi, J. K., & Lajide, L. (2013). Characterisation of bio-oil and bio-char from slow-pyrolysed Nigerian yellow and white corn cobs. J. Sustain. Energy Environ, 4(2), 77–84.
[39] Ain Afshar, S. (2018). Investigating the effect of extraction method (solvent, solvent-ultrasound) on antioxidant and antimicrobial activity of saffron onion extract. Agricultural Engineering and Technical Research Institute, publication number 56037. Iran Polymer website. (1403).
[40] Dizhbite, T., Telysheva, G., Jurkjane, V., & Viesturs, U. (2004). Characterization of the radical scavenging activity of lignins––natural antioxidants. Bioresource Technology, 95(3), 309–317.
[41] Esmaeelian, M., Jahani, M., Feizy, J., & Einafshar, S. (2023). Physicochemical and Functional Characteristics of Saffron (Crocus sativus L.) Corm Starch: Gelling and Film-Forming Properties. Food Biophysics, 18(1), 82-94.
[42] Przetaczek-Rożnowska, I. (2017). Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches. International Journal of Biological Macromolecules, 101, 536–542.
[43] Bello-Pérez, L. A., Agama-Acevedo, E., Zamudio-Flores, P. B., Mendez-Montealvo, G., & Rodriguez-Ambriz, S. L. (2010). Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT-Food Science and Technology, 43(9), 1434–1440.
[44] Ali, A., Wani, T. A., Wani, I. A., & Masoodi, F. A. (2016). Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. Journal of the Saudi Society of Agricultural Sciences, 15(1), 75–82.
[45] Felisberto, M. H. F., Beraldo, A. L., Costa, M. S., Boas, F. V., Franco, C. M. L., & Clerici, M. T. P. S. (2019). Physicochemical and structural properties of starch from young bamboo culm of Bambusa tuldoides. Food Hydrocolloids, 87, 101–107.
[46] Coria‐Hernández, J., López‐Figueroa, L. R., Méndez‐Albores, A., Arjona‐Román, J. L., & Meléndez‐Pérez, R. (2023). Novel Waxy Starch Cryostructured Coatings Applied on Commercial Crackers. Starch‐Stärke, 75(9-10), 2200276.
[47] Paraginski, R. T., Vanier, N. L., Berrios, J. D. J., de Oliveira, M., & Elias, M. C. (2014). Physicochemical and pasting properties of maize as affected by storage temperature. Journal of Stored Products Research, 59, 209–214.
[48] Mandal, A., & Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291–1299.
[49] Menardo, S., Airoldi, G., Cacciatore, V., & Balsari, P. (2015). Potential biogas and methane yield of maize stover fractions and evaluation of some possible stover harvest chains. Biosystems engineering, 129, 352-359.
[50] Liu, X., Zhang, Y., Li, Z., Feng, R., & Zhang, Y. (2014). Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresource technology, 170, 76-82.
[51] Barba, C., Montané, D., Rinaudo, M., & Farriol, X. (2002). Synthesis and characterization of carboxymethylcelluloses (CMC) from non-wood fibers I. Accessibility of cellulose fibers and CMC synthesis. Cellulose, 9, 319–326.
[52] Reis, A. M. S., Vieira, A. T., Santos, A. L., Ferreira, M. V., Batista, A. C., Assunção, R. M., ... & Faria, A. M. (2020). Regenerated cellulose membrane from peanut shell for biodiesel purification. Journal of the Brazilian Chemical Society, 31(5), 1011-1020.
[53] Rahman, M. M., Alam, M., Rahman, M. M., Susan, M. A. B. H., Shaikh, M. A. A., Nayeem, J., & Jahan, M. S. (2022). A novel approach in increasing carboxymethylation reaction of cellulose. Carbohydrate Polymer Technologies and Applications, 4, 100236.
[54] Li, H., Zhang, H., Xiong, L., Chen, X., Wang, C., Huang, C., & Chen, X. (2019). Isolation of cellulose from wheat straw and its utilization for the preparation of carboxymethyl cellulose. Fibers and Polymers, 20, 975-981.
[55] Stewart, D. (2008). Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products, 27(2), 202–207.
[56] Shi, Z., Xu, G., Deng, J., Dong, M., Murugadoss, V., Liu, C., Shao, Q., Wu, S., & Guo, Z. (2019). Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chemistry Letters and Reviews, 12(3), 235–243.
[57] Javier-Astete, R., Jimenez-Davalos, J., & Zolla, G. (2021). Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLoS One, 16(10), e0256559.
[58] Pelissari, F. M., Andrade‐Mahecha, M. M., Sobral, P. J. do A., & Menegalli, F. C. (2012). Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch‐Stärke, 64(5), 382–391.
[59] Andrade‐Mahecha, M. M., Tapia‐Blácido, D. R., & Menegalli, F. C. (2012). Physical–chemical, thermal, and functional properties of achira (Canna indica L.) flour and starch from different geographical origin. Starch‐Stärke, 64(5), 348–358.
[60] Pascoal, A. M., Di-Medeiros, M. C. B., Batista, K. A., Leles, M. I. G., Lião, L. M., & Fernandes, K. F. (2013). Extraction and chemical characterization of starch from S. lycocarpum fruits. Carbohydrate Polymers, 98(2), 1304–1310.
[61] Pourfarzad, A., Yousefi, A., & Ako, K. (2021). Steady/dynamic rheological characterization and FTIR study on wheat starch-sage seed gum blends. Food Hydrocolloids, 111, 106380.
[62] Das, K., Tiwari, R. K. S., & Shrivastava, D. K. (2010). Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. Journal of Medicinal Plants Research, 4(2), 104–111.
[63] Sanhueza, S. V., Friz Carrillo, M. C., & Quintriqueo Millán, S. (2014). Estudio exploratorio sobre las actitudes y comportamiento del profesorado de Chile en contextos de escolarización de alumnado inmigrante. Revista Electrónica de Investigación Educativa, 16(3), 148–162.
[64] Xu, S., Shang, M. Y., Liu, G. X., Xu, F., Wang, X., Shou, C. C., & Cai, S. Q. (2013). Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules, 18(5), 5265-5287.