مجله علوم و صنایع غذایی ایران

مجله علوم و صنایع غذایی ایران

بررسی تأثیر کمپلکس سه‌گانه آمیلوز-اسید استئاریک-ایزوله پروتئین آب‌پنیر بر خصوصیات رئولوژیکی، حسی و پایداری سس مایونز کم‌چرب

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 2 دانشکده علوم و مهندسی صنایع غذایی، دانشگاه بوعلی سینا همدان
چکیده
به دلیل کالری بالای چربی در سس مایونز، یافتن جایگزین برای این چربی اهمیت ویژه­ای دارد. در این پژوهش آمیلوز از نشاسته ذرت خام استخراج و با ایزوله پروتئین آب پنیر (3 % وزنی/وزنی) و اسید استئاریک (5 % وزنی/وزنی) در دمای 75 درجه سانتی‌گراد به مدت 60 دقیقه کمپلکس سه‌تایی تشکیل  شد. این کمپلکس در چهار غلظت مختلف 0، 3، 5 و 7 درصد (وزنی/وزنی) به فرمولاسیون سس مایونز اضافه شد. نتایج آزمون‌های رئولوژیکی نشان دهنده رفتار رقیق شونده با برش در تمامی نمونه­ها بود. با افزایش میزان کمپلکس از 0 به 7 درصد ویسکوزیته کاهش یافت. در تمام نمونه‌ها مدول ذخیره (G') بیشتر از مدول ویسکوز (G'') بود و نمونه‌ها به­عنوان مواد ویسکوالاستیک جامد طبقه‌بندی شدند. بیشترین پایداری در برابر دوفاز شدن (88 %) به نمونه فاقد کمپلکس و کمترین پایداری (75/78 %) به نمونه به نمونه حاوی 7 % کمپلکس سه‌گانه اختصاص داشت. از نظر خصوصیات حسی نمونه حاوی 5 % وزنی/وزنی کمپلکس سه‌گانه بالاترین مطلوبیت را داشت. نتایج این تحقیق نشان می­دهد که استفاده از 50 % وزنی/وزنی کمپلکس سه‌گانه برای تولید سس مایونز کم‌چرب با ویژگی­های تکنولوژیکی و حسی مطلوب پیشنهاد می‌شود.

 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the Effects of Amylose-Stearic Acid-Whey Protein Ternary Complex on the Rheological, Sensory, and Stability Properties of Low-Fat Mayonnaise

نویسندگان English

faeze karami 1
Mehran Alami 1
Mostafa Karami 2
Hoda Shahiri Tabarestani 1
1 ¹Department of Food Science and Technology, Faculty of Food Industries, Gorgan University of Agricultural Sciences and Natural Resources
2 ²Department of Food Industries, Faculty of Science and Food Industry Engineering, Bu-Ali Sina University, Hamedan, Iran
چکیده English

Given the high-calorie content of fat in mayonnaise, finding an effective fat replacer is crucial. In this study, amylose was extracted from raw corn starch and combined with whey protein isolate (3% w/w) and stearic acid (5% w/w) at 75°C for 60 min to form a ternary complex. This complex was incorporated into mayonnaise formulations at 4 different concentrations: 0, 3, 5, and 7 % (w/w). Rheological analysis revealed a shear-thinning behaviour in all samples, with viscosity decreasing as the complex concentration increased from 0 to 7%. The storage modulus (G') was consistently higher than the loss modulus (G''), categorizing the samples as solid viscoelastic materials. The sample without the complex exhibited the highest stability against phase separation (88.5 %) whereas sample c with 7 % of the ternary complex showed the lowest stability (78.75 %). Sensory evaluation indicated that the sample with 5 % (w/w) ternary complex achieved the highest acceptability. These findings suggest that incorporating 5 % w/w ternary complex is effective for producing low-fat mayonnaise with both desirable technological and sensory properties.

 

کلیدواژه‌ها English

Stearic Acid
Corn Amylose
Whey Protein Isolate
Viscosity
Low Calorie Mayonnaise
[1] Agyei‐Amponsah, J., Macakova, L., DeKock, H. L., & Emmambux, M. N. (2019). Sensory, tribological, and rheological profiling of “clean label” starch–lipid complexes as fat replacers. Starch‐Stärke, 71(9-10), 1800340.
[2] Bajaj, R., Singh, N., & Kaur, A. (2019). Properties of octenyl succinic anhydride (OSA) modified starches and their application in low fat mayonnaise. International journal of biological macromolecules, 131, 147-157.
[3] Rojas-Martin, L., Quintana, S. E., & García-Zapateiro, L. A. (2023). Physicochemical, rheological, and microstructural properties of low-fat mayonnaise manufactured with hydrocolloids from Dioscorea rotundata as a fat substitute. Processes, 11(2), 492.
[4] Chung, C., & McClements, D. J. (2014). Structure–function relationships in food emulsions: Improving food quality and sensory perception. Food Structure, 1(2), 106-126.
[5] Ma, Z., & Boye, J. I. (2013). Advances in the design and production of reduced-fat and reduced-cholesterol salad dressing and mayonnaise: a review. Food and Bioprocess Technology, 6, 648-670.
[ 6] Lee, I., Lee, S., Lee, N., & Ko, S. (2013). Reduced‐fat mayonnaise formulated with gelatinized rice starch and xanthan gum. Cereal Chemistry, 90(1), 29-34.
[7] Chung, C., Degner, B., & McClements, D. J. (2014). Reduced calorie emulsion-based foods: Protein microparticles and dietary fiber as fat replacers. Food Research International, 64, 664-676.
[8] Teklehaimanot, W. H., Duodu, K. G., & Emmambux, M. N. (2013). Maize and teff starches modified with stearic acid as potential fat replacer in low calorie mayonnaise‐type emulsions. Starch‐Stärke, 65(9‐10), 773-781.
[9] Agyei‐Amponsah, J., Macakova, L., DeKock, H. L., & Emmambux, M. N. (2021). Effect of substituting sunflower oil with starch‐based fat replacers on sensory profile, tribology, and rheology of reduced‐fat mayonnaise‐type emulsions. Starch‐Stärke, 73(3-4), 2000092
[10] Parada, J., & Santos, J. L. (2016). Interactions between starch, lipids, and proteins in foods: Microstructure control for glycemic response modulation. Critical Reviews in Food Science and Nutrition, 56(14), 2362-2369.
[11] Wang, S., Wang, J., Yu, J., & Wang, S. (2016). Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis. Food Chemistry, 190, 285-292.
[12] Zheng, M., Chao, C., Yu, J., Copeland, L., Wang, S., & Wang, S. (2018). Effects of chain length and degree of unsaturation of fatty acids on structure and in vitro digestibility of starch–protein–fatty acid complexes. Journal of Agricultural and Food Chemistry, 66(8), 1872-1880.
[13] Wang, S., Zheng, M., Yu, J., Wang, S., & Copeland, L. (2017). Insights into the formation and structures of starch–protein–lipid complexes. Journal of Agricultural and Food Chemistry, 65(9), 1960-1966.
[14] Chen, W., Chao, C., Yu, J., Copeland, L., Wang, S., & Wang, S. (2021). Effect of protein-fatty acid interactions on the formation of starch-lipid-protein complexes. Food Chemistry, 364, 130390.
[15] Sun C, Liu R, Liang B, Wu T, Sui W, Zhang M. Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise. Food Research International. 2018;108:151-60.
[16] Yang X, Li A, Yu W, Li X, Sun L, Xue J, et al. Structuring oil-in-water emulsion by forming egg yolk/alginate complexes: Their potential application in fabricating low-fat mayonnaise-like emulsion gels and redispersible solid emulsions. International Journal of Biological Macromolecules. 2020;147:595-606.
[17] Sun H, Ding H, Salama M, Li X, Abou-Elsoud M, Zhang X, et al. Enhancement of the formation and stability of low-fat Pickering emulsion gels stabilized with egg yolk granules-chitosan complex: Insights into the development of mayonnaise substitutes. Food Chemistry. 2024:141734.
[18] Hosseini RS, Rajaei A. Potential Pickering emulsion stabilized with chitosan-stearic acid nanogels incorporating clove essential oil to produce fish-oil-enriched mayonnaise. Carbohydrate Polymers. 2020;241:116340.
[19] Dutta, H., Paul, S. K., Kalita, D., & Mahanta, C. L. (2011). Effect of acid concentration and treatment time on acid–alcohol modified jackfruit seed starch properties. Food Chemistry, 128(2), 284-291.
[20] Jan, R., Saxena, D., & Singh, S. (2016). Physico-chemical, textural, sensory and antioxidant characteristics of gluten–Free cookies made from raw and germinated Chenopodium (Chenopodium album) flour. LWT-Food Science and Technology, 71, 281-287.
[21] Zhang, G., Maladen, M., Campanella, O. H., & Hamaker, B. R. (2010). Free fatty acids electronically bridge the self-assembly of a three-component nanocomplex consisting of amylose, protein, and free fatty acids. Journal of Agricultural and Food Chemistry, 58(16), 9164-9170.
[22] Singh, M., Byars, J. A., & Kenar, J. A. (2014). Amylose–potassium oleate inclusion complex in plain set‐style yogurt. Journal of Food Science, 79(5), E822-E827.
[23] Nikzade, V., Tehrani, M. M., & Saadatmand-Tarzjan, M. (2012). Optimization of low-cholesterol–low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocolloids, 28(2), 344-352.
[24] Kutz, M. (2007). Handbook of farm dairy and food machinery. Chapter 14 (Food rheology), 395-402.
[25] Rangriz, A., Mortazavi, S. A., Khomeiri, M., & Amiri, S. (2016). Physicochemical, textural, sensory and rheological properties of low-calorie mayonnaise with dairy-based. Iranian Food Science and Technology Research Journal, 12(1), 34-48.
[26] Niknam, R., Ayaseh, A. and Ghanbarzadeh, B. (2018). Steady shear flow and dynamic rheology of the emulsions containing ultrasound-assisted extracted Plantago major seed gum. 49(5), 536-549.
[27] Mun, S., Kim, Y.-L., Kang, C.-G., Park, K.-H., Shim, J.-Y., & Kim, Y.-R. (2009). Development of reduced-fat mayonnaise using 4αGTase-modified rice starch and xanthan gum. International journal of biological macromolecules, 4, 5, 400-407.
[28] Razavi, R., Kenari, R. E., Farmani, J., & Jahanshahi, M. (2020). Fabrication of zein/alginate delivery system for nanofood model based on pumpkin. International journal of biological macromolecules, 165, 3123-3134.
[29] Shirmohammadi, M., Azadmard, D., & Zarrin, G. (2015). Feasibility of formulation functional mayonnaise with incorporating flaxseed powder.  Journal of food science and technology [In Persian].
[30] Mirghfouri, S. and Rahimi, S. (2016). Evaluation of physicochemical, emulsion and rheological properties of mayonnaise containing soy milk and aloe vera gel. New Technologies in Food Industry, 3(3), 73-83. [In Persian] .