بهینه سازی زمان استحصال تقطیری در گیاهان دارویی و صنعتی تحت شرایط کروماتوگرافی-طیف سنجی و مبنی بر پروفایل شیمیایی ترکیبات

نوع مقاله : پژوهشی اصیل

نویسنده
عضو هیئت علمی گروه گیاهان دارویی، دانشگاه اراک، اراک، ایران
10.48311/fsct.2025.83988.0
چکیده
علیرغم پیشرفت و ابداع روش های نوین در حوزه استحصال و فرآوری ترکیبات مؤثره گیاهان دارویی، استحصال با تکنیک تقطیر با داشتن پیشینه متمادی توأم با پیشرفت و تکامل علمی، همچنان یک رویکرد فناوری نوآورانه محسوب می گردد که بهره وری، کیفیت و پایداری از شاخص های اصلی آن می باشد. این پژوهش به منظور تعیین زمان بهینه استخراج و ترسیم پروفایل بیوشیمیایی ترکیبات بر اساس آنالیز کروماتوگرافی گازی-طیف سنجی جرمی و در زمان های مختلف تفطیر با انتخاب گونه دارویی بادرنجبویه (Melissa officinalis L.) به عنوان یک گونه دارویی پرمصرف در صنایع غذایی و دارویی صورت گرفت. تجزیه و تحلیل داده ها، وجود اختلاف معنی­دار در محتوی اسانس را در زمان های مختلف استخراج تبیین نمود؛ به نحوی که در تیمارهای 180 و 240 دقیقه به ترتیب حداکثر (33/0 درصد V/W%) و حداقل (25/0 درصد V/W%) راندمان استخراجی ثبت گردید. به طور کلی در تیمارهای مختلف تعداد 62 ترکیب شیمیایی جداسازی و تعداد 58 ترکیب شناسایی گردید که ژرانیال، نرال و سیترونلال به عنوان شاخص اصلی اثربخشی با مجموع 1/77 درصد، سطح حداکثری را در تیمار 180 دقیقه به خود اختصاص دادند. در کلاس ترکیبات به موازات افزایش زمان استخراج، مونوترپن های اکسیژنه کاهش یافت. بر اساس مشاهدات و تجزیه و تحلیل نتایج، زمان استحصال تقطیری مناسب برای این گونه و گونه های مشابه را می توان180 دقیقه ثبت نمود که علاوه بر دست یابی به حداکثر عملکرد متابولتی و در پی آن فرآورده های با کمیت و کیفیت بهینه، می توان از هدررفت نهاده های مصرفی و انرژی در فرآیند استحصال ممانعت کرد و این مسئله را به عنوان یک مرجع مهم در تولید فرآورده های غذایی و دارویی لحاظ نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of distillation time in medicinal and industrial plants using chromatographic-spectrometric conditions and based on the chemical profile of compounds

نویسنده English

Reza Shahhoseini
Department of Medicinal Plants, Arak University, P.O.Box: 38156-8-8349, Arak, Iran
چکیده English

Despite the progress and innovation of new methods in the field of extracting and processing effective compounds from medicinal plants, the distillation technique which has a long history combined with scientific progress and evolution, is still considered an innovative technological approach. Productivity, quality, and sustainability are its main indicators. This study was conducted to determine the optimal extraction time and draw the biochemical profile of compounds using gas chromatography-mass spectrometry analysis at different extraction times. Melissa officinalis was selected as a widely used medicinal species in the food and pharmaceutical industries. Data analysis revealed a significant difference in essential oil content at various extraction times. The maximum (0.33% V/W%) and minimum (0.25% V/W%) extraction efficiency was observed at 180 and 240 minutes, respectively. In total, 62 chemical compounds were isolated in different treatments, with 58 compounds identified. Geranial, neral and citronellal were the main indicators of effectiveness, comprising total of 77.1%, with the highest levels found in the 180-minute treatment. In terms of compound class, oxygenated monoterpenes decreased as extraction time increased. After observing and analyzing the results, it can be determined that the ideal distillation time for this and similar species is 180 minutes. This timeframe not only ensures maximum metabolite yield and high quality products, but also helps prevent the unnecessary waste of consumable inputs and energy during the extraction process. This finding can serve as a valuable reference point for the production of food and pharmaceutical items.





 

کلیدواژه‌ها English

Bioactive compounds
Essential oils
Extraction
Food-pharmaceutica
[1] Mirzaei, M., Ahmadi, N., Sefidkon, F., Shojaeiyan, A., & Mazaheri, A. (2015). Evaluation of phytochemical profiling of damask rose (Rosa damascena Mill.) at various post-harvest incubation conditions and determination of the best hydro-distillation time. Iranian Journal of Medicinal and Aromatic Plants, 31(4), 732-742. https://doi.org/10.22092/ijmapr.2015.102689
[2] Zheljazkov, V.D., Gawde, A., Cantrell, C.L., Astatkie, T., & Schlegel, V. (2015). Distillation time as tool for improved antimalarial activity and differential oil composition of cumin seed oil. PLoS One, 10(12), 1-12. https://doi.org/10.1371/journal.pone.0144120
[3] Ghorbanpour, M., & Shahhoseini, R. (2017). Influence of distillation time on the content and constituent of essential oils isolated from lemon verbena (Lippia citriodora Kunth). Journal of Essential Oil Bearing Plants, 20(4), 1083-1089. https://doi.org/10.1080/0972060X.2017.1345648
[4] Marques, S.M., Pinheiro, R.O., Nascimento, R.D., Andrade, E.A., & Faria, L.D. (2023). Effects of Harvest Time and Hydrodistillation Time on Yield, Composition, and Antioxidant Activity of Mint Essential Oil. Molecules, 28(22), 1-13. https://doi.org/10.3390/molecules28227583
[5] Kant, R., & Kumar, A. (2022). Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustainable Chemistry and Pharmacy, 30, 100829.  https://doi.org/10.1016/j.scp.2022.100829
[6] Toker, R., Golukcu, M., & Tokgoz, H. (2017). Effects of distillation times on essential oil compositions of Origanum minutiflorum O. Schwarz Et. and PH Davis. Journal of Essential Oil Research, 29(4), 330-335. http://dx.doi.org/10.1080/10412905.2016.1276026
[7] Aljaafari, M.N., AlAli, A.O., Baqais, L., Alqubaisy, M., AlAli, M., Molouki, A., & Lim, S.E. (2021). An overview of the potential therapeutic applications of essential oils. Molecules, 26(3), 1-27. https://doi.org/10.3390/molecules26030628
[8] Vora, L.K., Gholap, A.D., Hatvate, N.T., Naren, P., Khan, S., Chavda, V.P., & Khatri, D.K. (2024). Essential oils for clinical aromatherapy: a comprehensive review. Journal of Ethnopharmacology, 330, 1-21.  https://doi.org/10.1016/j.jep.2024.118180
[9] Medeiros, A.R., Leite, J.F., de Assis, R.A., Rocha, J.M., Bertolucci, S.V., & Pinto, J.P. (2024). Application of natural elicitors to promote growth, photosynthetic pigments, and the content and composition of essential oil in Melissa officinalis L. Industrial Crops and Products, 208, 117885. https://doi.org/10.1016/j.indcrop.2024.118244
[10] Dodos, T., Rajcevic, N., Janackovic, P., Vujisic, L., & Marin, P.D. (2019). Essential oil profile in relation to geographic origin and plant organ of Satureja kitaibelii Wierzb. ex Heuff. Industrial Crops and Products, 139, 1-8. https://doi.org/10.1016/j.indcrop.2019.111549
[11] Yammine, J., Chihib, N.E., Gharsallaoui, A., Ismail, A., & Karam, L. (2024). Advances in essential oils encapsulation: Development, characterization and release mechanisms. Polymer Bulletin, 81(5), 3837-3882. https://doi.org/10.1007/s00289-023-04916-0
[12] Ye, R., Tian, K., Hu, H., Li, P., & Tian, X. (2023). Extraction process optimization of essential oil from Mellissa officinalis L. using a new ultrasound-microwave hybrid-assisted Clevenger hydrodistillation. Industrial Crops and Products, 203, 117165. https://doi.org/10.1016/j.indcrop.2023.117165
[13] Abdellatif, F., Akram, M., Begaa, S., Messaoudi, M., Benarfa, A., Egbuna, C., & Simal-Gandara, J. (2021). Minerals, essential oils, and biological properties of Melissa officinalis L. Plants, 10(6), 3-16. https://doi.org/10.3390/plants10061066
[14] Perovic, A.B., Karabegovic, I.T., Krstic, M.S., Veličkovic, A.V., Avramovic, J.M., Danilovic, B.R., & Veljkovic, V.B. (2024). Novel hydrodistillation and steam distillation methods of essential oil recovery from lavender: A comprehensive review. Industrial Crops and Products, 211, 118244. https://doi.org/10.1016/j.indcrop.2024.118244
[15] Pheko-Ofitlhile, T., & Makhzoum, A. (2024). Impact of hydrodistillation and steam distillation on the yield and chemical composition of essential oils and their comparison with modern isolation techniques. Journal of Essential Oil Research, 36(2), 105-115. https://doi.org/10.1080/10412905.2024.2320350
[16] Katekar, V.P., Rao, A.B., & Sardeshpande, V.R. 2023. A hydrodistillation-based essential oils extraction: A quest for the most effective and cleaner technology. Sustainable Chemistry and Pharmacy, 36, 101270. https://doi.org/10.1016/j.scp.2023.101270
[17] Barazandeh, M.M. (2005). The effect of method and time of distillation on the essential oil yield and composition of Eucalyptus globulus. Iranian Journal of Medicinal and Aromatic Plants Research, 21(1), 75-93. https://doi.org/10.22092/ijmapr.2005.115209
[18] Jamshidi, A.H., Shams Ardakani, M.R., Hadjiakhondi, A., & Abdi, K. (2004). The influence of distillation conditions on the essential oil composition of fennel (Foeniculum vulgare Mill.). Journal of Medicinal Plants, 3(11), 68-72. 20.1001.1.2717204.2004.3.11.9.9
[19] Hekmatsorush, I., Milani Kalkhorani, N., Rezaee, M.B., Hero Abadi, F., & Hamisi, M. (2014). Phytochemical analysis of essential oil of Tanacetum parthenium L. with hydro-distillation and steam distillation. Journal of Medicinal plants and By-Products, 3(1), 53-57.doi: 10.22092/jmpb.2014.108604
[20] Machado, C.T., Hodel, K.S., Lepikson, H.A., & Machado, B.S. (2024). Distillation of essential oils: An innovative technological approach focused on productivity, quality and sustainability. Plos one, 19(2), 214-220. https://doi.org/10.1371/journal.pone.0299502
[21] Souihi, M., Amri, I., Souissi, A., Hosni, K., Brahim, N.B., & Annabi, M. (2020). Essential oil and fatty acid composition of Melissa officinalis L. Progress in Nutrition, 22, 253-258. https://doi.org/10.23751/pn.v22i1.7758
[22] Castro, R., Boczkaj, G., & Cabezas, R. (2023). A perspective on missing aspects in ongoing purification research towards Melissa officinalis. Foods, 12(9), 1-15.  https://doi.org/10.3390/foods12091916
[23] Bounihi, A., Hajjaj, G., Alnamer, R., Cherrah, Y., & Zellou, A. (2013). In vivo potential antiinflammatory activity of Melissa officinalis L. essential oil. Advances in Pharmacological and Pharmaceutical Sciences, 2013(1), 1-8. https://doi.org/10.1155/2013/101759
[24] Alvarado, P.A., Soto, M.R., Gomez, F.I., Rodriguez, N.G., de Guzman, Y.R., Jara-Aguilar, D.R., & Alfaro, I.M. (2023). Effects of Melissa officinalis essential oil on state and trait anxiety. Pharmacognosy Journal, 15(3), 456-460. https://doi.org/10.5530/pj.2023.15.101
[25] Latief, R., Bhat, K.A., Khuroo, M.A., Shawl, A.S., & Chandra, S. (2017). Comparative analysis of the aroma chemicals of Melissa officinalis using hydrodistillation and HS-SPME techniques. Arabian Journal of Chemistry, 10, 2485-2490. https://doi.org/10.1016/j.arabjc.2013.09.015
[26] Chatzopoulou, P.S, & Katsiotis, S.T. (1995). Procedures influencing the yield and the quality of the essential oil from Juniperus communis L. berries. Pharmaceutica Acta Helvetiae, 70(3), 247-253. https://doi.org/10.1016/0031-6865(95)00026-6
[27] Smallfield, B.M., Klink, J.W., Perry, N.B., & Dodds, K.G. (2001). Coriander spice oil: effects of fruit crushing and distillation time on yield and composition. Journal of Agricultural and Food Chemistry, 49(1), 118-123. https://doi.org/10.1021/jf001024s
[28] Khorshidi, J., Mohammadi, R., Fakhr, M.T., & Nourbakhsh, H. (2009). Influence of drying methods, extraction time, and organ type on essential oil content of rosemary (Rosmarinus officinalis L.). Natural Science, 7(11), 42-44. https://www.researchgate.net/publication/284222289
[29] Biniyaz, T., Habibi, Z., & Yousefi, M. (2011). Comparison of chemical composition of the oils from aerial parts of Artemisia turcomanica Gand. at different distillation times. Iranian Journal of Medicinal and Aromatic Plants Research, 26(4), 574-582. https://doi.org/10.22092/ijmapr.2011.6673
[30] Naderi, M., Sefidkon, F., Azizi, A., & Pourheravi, M.R. (2011). The influense of different distillation times on essential oil content and composition of Laurus nobilis L. Iranian Journal of Medicinal and Aromatic Plants Research, 27(2), 249-260. https://doi.org/10.22092/ijmapr.2011.6401
[31] Khalid, K.A. (2012). Influence of hydro-distillation time on the yield and quality of dill volatile constituents. Medicinal and Aromatic Plant Science and Biotechnology, 6(1), 46-49.
[32] Wesolowska, A., Jadczak, D.A., & Grzeszczuk, M. (2012). Influence of distillation time on the content and composition of essential oil isolated from wild thyme (Thymus serpyllum L.). Herba Polonica, 58(4). 40-50.
[33] Zheljazkov, V.D., Astatkie, T., Jeliazkova, E.A., & Schlegel, V. (2012). Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees. Journal of Oleo Science, 61(10), 537-546. https://doi.org/10.5650/jos.61.537
[34] Zheljazkov, V.D., Astatkie, T., & Schlegel, V. (2012). Distillation time changes oregano essential oil yields and composition but not the antioxidant or antimicrobial activities. HortScience, 47(6), 777-784. https://doi.org/10.21273/HORTSCI.47.6.777
[35] Zheljazkov, V.D., Horgan, T., Astatkie, T., & Schlegel, V. (2013). Distillation time modifies essential oil yield, composition, and antioxidant capacity of fennel (Foeniculum vulgare Mill). Journal of Oleo Science, 62(9), 665-672. https://doi.org/10.5650/jos.62.665
[36] Zheljazkov, V.D., Cantrell, C.L., Astatkie, T., & Jeliazkova, E. (2013). Distillation time effect on lavender essential oil yield and composition. Journal of Oleo Science, 62(4), 195-199.  https://doi.org/10.5650/jos.62.195
[37] Zheljazkov, V.D., Astatkie, T., O'Brocki, B., & Jeliazkova, E. (2013). Essential oil composition and yield of anise from different distillation times. HortScience, 48(11), 1393-1396.  https://doi.org/10.21273/HORTSCI.48.11.1393
[38] Zheljazkov, V.D., Astatkie, T., Horgan, T., Schlegel, V., & Simonnet, X. (2013). Distillation time effect on essential oil yield, composition, and antioxidant capacity of sweet sagewort (Artemisia annua L.) oil. HortScience, 48(10), 1288-1292.  https://doi.org/10.21273/HORTSCI.48.10.1288
[39] Hennia, A., Miguel, M.G., Brada, M., Nemmiche, S., & Figueiredo, A.C. (2016). Composition, chemical variability and effect of distillation time on leaf and fruits essential oils of Myrtus communis from north western Algeria. Journal of Essential Oil Research, 28(2), 146-156. http://dx.doi.org/10.1080/10412905.2015.1090936
[40] Wesolowska, A. (2019). Influence of distillation time on the content and composition of essential oils isolated from different parts of Agastache astromontana ‘Pink Pop’. Journal of Essential Oil Bearing Plants, 22(2), 311-323. https://doi.org/10.1080/0972060X.2019.1618205
[41] Adams RP. (2007). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy: Allured Publishing Corporation, Carol Stream, Illinois USA.  
[42] Babushok, V.I., & Zenkevich, I.G. (2009). Retention indices for most frequently reported essential oil compounds in GC. Chromatographia, 69, 257-269. https://doi.org/10.1365/s10337-008-0872-3
[43] Almeida, H.H., Crugeira, P.J., Amaral, J.S., Rodrigues, A.E., & Barreiro, M.F. (2024). Disclosing the potential of Cupressus leylandii AB Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Palau, and Melissa officinalis L. hydrosols as eco-friendly antimicrobial agents. Natural Products and Bioprospecting, 14(1), 1-12. https://doi.org/10.1007/s13659-023-00417-9
[44] Alizadeh, B., & Shahidi, F. (2019). Melissa officinalis essential oil: Chemical compositions, antioxidant potential, total phenolic content and antimicrobial activity. Nutrition and Food Sciences Research, 6(1), 17-25. https://doi.org/10.29252/nfsr.6.1.17
[45] Nurzynska, R., Bogucka-Kocka, A., & Szymczak, G. (2014). Volatile constituents of Melissa officinalis leaves determined by plant age. Natural Product Communications, 9(5), 1-4. https://doi.org/10.1177/1934578X140090053
[46] Nouri, A., Mirabzadeh, M., Safari, N., & Ebadi, M.T. (2020). Evaluation of essential oil composition and rosmarinic acid content in lemon balm (Melissa officinalis L.) cultivated in south of Iran. Journal of Medicinal plants and By-Products, 9(2), 159-166. https://doi.org/10.22092/jmpb.2020.123119
[47] Abdellatif, F., & Hassani, A. (2015). Chemical composition of the essential oils from leaves of Melissa officinalis extracted by hydrodistillation, steam distillation, organic solvent and microwave hydrodistillation. Journal of Materials and Environmental Science, 6(1), 207-213.
[48] Bogdanovic, A., Tadic, V., Arsic, I., Milovanovic, S., Petrovic, S., & Skala, D. (2016). Supercritical and high pressure subcritical fluid extraction from lemon balm (Melissa officinalis L., Lamiaceae). The Journal of Supercritical Fluids, 107, 234-242.  https://doi.org/10.1016/j.supflu.2015.09.008
[49] Virchea, L.I., Gligor, F.G., Frum, A., Mironescu, M., Myachikova, N.I., & Georgescu, C. (2021). Phytochemical analysis and antioxidant assay of Melissa officinalis L. (lemon balm). In BIO Web of Conferences (Vol. 40, p. 02004). EDP Sciences. https://doi.org/10.1051/bioconf/20214002004
[50] Cannon, J.B., Cantrell, C.L., Astatkie, T., & Zheljazkov, V.D. (2013). Modification of yield and composition of essential oils by distillation time. Industrial Crops and Products, 41, 214-220.  https://doi.org/10.1016/j.indcrop.2012.04.021
[51] Medeiros, A.R., Assis, R.A., dos Santos Boeira, L., Leite, J.F., Rocha, J.M., Diotto, A.V., & Pinto, J.P. (2023). Magnetically treated water affects Melissa officinalis L. growth, nutritional status and essential oil compounds. Journal of Cleaner Production, 428, 139311. https://doi.org/10.1016/j.jclepro.2023.139311
[52] Sharma, S., Habib, S., Sahu, D., & Gupta, J. (2021). Chemical properties and therapeutic potential of citral, a monoterpene isolated from lemongrass. Medicinal Chemistry, 17(1), 2-12. https://doi.org/10.2174/1573406416666191227111106
[53] Maswal, M., & Dar, A.A. (2014). Formulation challenges in encapsulation and delivery of citral for improved food quality. Food Hydrocolloids, 37, 182-195. https://doi.org/10.1016/j.foodhyd.2013.10.035
[54] Djilani, A., & Dicko, A. (2012). The therapeutic benefits of essential oils. Nutrition, Well-Being and Health, 7, 155-179. https://doi.org/ 10.5772/25344
[55] Moudachirou, M., Gbenou, J.D., Chalchat, J.C., Chabard, J.L., & Lartigue, C. (1999). Chemical composition of essential oils of Eucalyptus from Benin: Eucalyptus citriodora and E. camaldulensis. Influence of location, harvest time, storage of plants and time of steam distillation. Journal of Essential Oil Research, 11(1), 109-118.  https://doi.org/10.1080/10412905.1999.9701085
[56] Zheljazkov, V.D., Astatkie, T., & Schlegel, V. (2012). Effects of distillation time on the Pinus ponderosa essential oil yield, composition, and antioxidant activity. HortScience, 47(6), 785-789. https://doi.org/10.21273/HORTSCI.47.6.785
[57] Baydar, H., Schulz, H., Kruger, H., Erbas, S., & Kineci, S. (2008). Influences of fermentation time, hydro-distillation time and fractions on essential oil composition of Damask Rose (Rosa damascena Mill.). Journal of Essential Oil Bearing Plants, 11(3), 224-232. https://doi.org/10.1080/0972060X.2008.10643624
[58] Mirza, M., & Najafpour Navaei, M.D. (2016). The effect of extraction time on essential oil composition of 4 genotype of Rosa damascene Mill. Eco-phytochemical Journal of Medicinal Plants, 4(2), 23-32.  20.1001.1.23223235.1395.4.2.3.7
[59] Najafian, S.H., Shahcheraghi, M.A., & Rowshan, V. (2016). Investigation of the effect of extraction duration on the essential oil content and composition of Zataria multiflora and Thymus daenensis under flowering stages. IJHS, 17(2), 181-192. URL: http://journal-irshs.ir/article-1-155-en.html
[60] Zheljazkov, V.D., Astatkie, T., Shiwakoti, S., Poudyal, S., Horgan, T., Kovatcheva, N., & Dobreva, A. (2014). Essential oil yield and composition of garden sage as a function of different steam distillation times. HortScience, 49(6), 785-790. https://doi.org/10.21273/HORTSCI.49.6.785
[61] Kholiya, S., Bhatt, G., Chauhan, A., Kumar, D., Venkatesha, K.T., Upadhyay, R.K., & Padalia, R.C. (2023). Effect of seasons, storage and distillation times on essential oil composition of Melaleuca leucadendra (L.). Indian Journal of Natural Products and Resources (IJNPR)[Formerly Natural Product Radiance (NPR)], 14(4), 611-616. https://doi.org/10.56042/ijnpr.v14i4.5449
[62] Palmieri, S., Maggio, F., Pellegrini, M., Ricci, A., Serio, A., Paparella, A., & Lo Sterzo, C. (2021). Effect of the distillation time on the chemical composition, antioxidant potential and antimicrobial activity of essential oils from different Cannabis sativa L. cultivars. Molecules, 26(16), 1-13.
[63] Kumar, R., Sharma, S., Sharma, S., & Kumar, N. (2016). Drying methods and distillation time affects essential oil content and chemical compositions of Acorus calamus L. in the western Himalayas. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3), 136-141. http://dx.doi.org/10.1016/j.jarmap.2016.06.001
[64] Bozovic, M., Navarra, A., Garzoli, S., Pepi, F., & Ragno, R. (2017). Esential oils extraction: A 24-hour steam distillation systematic methodology. Natural Product Research, 31(20), 2387-2396. https://doi.org/10.1080/14786419.2017.1309534
[65] Elhawary, E.A., Nilofar, N., Zengin, G., & Eldahshan, O.A. (2024). Variation of the essential oil components of Citrus aurantium leaves upon using different distillation techniques and evaluation of their antioxidant, antidiabetic, and neuroprotective effect against Alzheimer’s disease. BMC Complementary Medicine and Therapies, 24(1), 4-10. https://doi.org/10.1186/s12906-024-04380-x