بررسی و بهبود خواص فیلم خوراکی بر پایه پکتین و پروتئین آب‌پنیر، حاوی اسانس آویشن به روش نانوامولسیون پیکرینگ

نویسندگان
1 دانش‌آموخته ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران
2 دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران
3 استادیار گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران
چکیده
در چند سال اخیر استفاده از فیلم‌های خوراکی به‌جای مواد پلاستیکی موردتوجه بسیاری از محققین قرارگرفته است. این فیلم‌ها به دلیل زیست‌تخریب‌پذیر بودنشان کمک بسیار زیادی به محیط‌زیست کرده‌اند. در این پژوهش فیلم خوراکی بر پایه پکتین و پروتئین آب‌پنیر حاوی امولسیون اسانس آویشن که با سه روش تولید (تغلیظ کننده تحت خلأ همراه با آون، خشک‌کن پاششی نانو و توئین 80) شده مورد بررسی قرار گرفت. یافته‌های حاصل از بررسی ساختار فیلم و میزان پراکندگی ذرات در سطح فیلم‌ها نشان داد که با اضافه نمودن امولسیون آویشن حاصله از توئین 80 میزان زبری و خشنی نمونه فیلم کاهش داد. نتایج حاکی از آن بود که با افزودن امولسیون آویشن به فیلم‌های خوراکی که بر پایه پکتین و پروتئین آب‌پنیر، میزان نفوذپذیری به بخارآب به‌طور چشمگیری کاهش یافت. همچنین نتایج نشان داد با اضافه نمودن امولسیون آویشن حاصله از تغلیظ کننده تحت خلأ و خشک‌کن میزان انحلال‌پذیری نیز افزایش ولی با افزودن امولسیون آویشن حاصله از توئین 80 میزان انحلال‌پذیری کاهش یافت. اضافه نمودن امولسیون آویشن حاصله از دستگاه تغلیظ کننده تحت خلأ و خشک‌کن پاششی نانو سبب کاهش میزان نفوذپذیری فیلم‌ها به نور شد. نتایج مربوط به رنگ‌سنجی نمونه‌ها نشان داد که میزان روشنایی با افزودن امولسیون آویشن تولیدشده از دستگاه تغلیظ کننده تحت خلأ و خشک‌کن پاششی نانو، افزایش یافت اما با افزودن امولسیون آویشن به‌دست‌آمده از توئین 80، میزان روشنایی را کاهش داد. نتایج مربوط به پارامتر a* از تفاوت معنی­داری بین نمونه‌های پودر خشک‌کن و تغلیظ کننده تحت خلأ با نمونه شاهد حاکی بود ولی میان نمونه توئین 80 با نمونه شاهد هیچ‌گونه اختلاف معنی‌داری مشاهده نگردید. نتایج شاخص b* نشان داد که تمامی نمونه‌ها با یکدیگر اختلاف معنی‌داری در سطح 5 درصد داشتند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating physical and mechanical properties of edible film based on pectin and whey protein, containing thyme essential oil using Pickering nanoemulsion method

نویسندگان English

Haniyeh Nikbakht 1
Ahmad Rajaei 2
Mohamad Hadi Movahednejad 3
1 MS. Graduated of Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
2 Associated Proffesor of Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
3 Assistant Proffesor of Department Biosystem engineering, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
چکیده English

In recent years, the use of edible films has attracted the attention of many researchers. These films have contributed a lot to the environment due to their biodegradable nature. In this research, the edible film based on pectin and the cultivation of cheese juice contains thyme essential oil emulsion, which was investigated by three methods (condenser under vacuum with oven, nano spray dryer and Tween 80). The findings of the investigation of the film structure and the amount of particle dispersion on the surface of the films showed that the roughness and roughness of the film sample was reduced by adding thyme emulsion from Tween 80. The results indicated that by adding thyme emulsion to edible films based on pectin and cheese culture, the permeability to water vapor decreased significantly. Also, the results showed that by adding the thyme emulsion obtained from the thickener under the influence of vacuum and drying, its increase rate was reduced by adding the thyme emulsion obtained from Tween 80. Adding the thyme emulsion obtained from the vacuum concentrator and nano spray dryer reduced the light permeability of the films. The colorimetric results of the samples showed that the brightness increased with the addition of thyme emulsion produced with a vacuum concentrator and nano spray dryer, but the brightness decreased with the addition of thyme emulsion obtained from Tween 80. The results related to L* indicated a significant difference between the samples of drying powder and thickener under vacuum with the control sample, but no significant difference was observed between the sample of Tween 80 and the sample. The b* index showed that all samples show results with a difference of 5%.

کلیدواژه‌ها English

Edible film
Pectin
Whey protein
Mechanical properties
Pickering nanoemulsion
1. Alizade V, Barzegar H, Nasehi B, Samavati V. Characterization of physical and antimicrobial properties of chitosan edible films containing Pistacia atlantica gum essence. Iran Food Sci Technol Res J. 13(4):584-93 (2017). doi: https://doi.org/10.22067/ifstrj.v1395i0.50541.
2. Zanganeh Z, SADEGHI MA, Ghorbani M, Kashaninjad M, Aghajani N. Production and evaluation of composite films properties based on quince seed mucilage and whey protein isolate. J Food Sci Technol (Iran). 14(67):8 (2017).
3. Kester JJ, Fennema O. Edible films and coatings: a review. (1986).
4. Campos CA, Gerschenson LN, Flores SK. Development of edible films and coatings with antimicrobial activity. Food Bioproc Tech. 4:849-75 (2011). doi: https://doi.org/10.1007/s11947-010-0434-1.
5. Kong I, Degraeve P, Pui LP. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation—A Review. Foods. 11(4):555 (2022). doi: https://doi.org/10.3390/foods11040555.
6. Pandita G, de Souza CK, Gonçalves MJ, Jasińska JM, Jamróz E, Roy S. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. Int J Biol Macromol. 269:132067 (2024). doi: https://doi.org/10.1016/j.ijbiomac.2024.132067.
7. De Farias PM, De Sousa RV, Maniglia BC, Pascall M, Matthes J, Sadzik A, et al. Biobased Food Packaging Systems Functionalized with Essential Oil via Pickering Emulsion: Advantages, Challenges, and Current Applications. ACS Omega. 10(5):4173-86 (2025). doi: 10.1021/acsomega.4c09320.
8. Huffman LM, Harper WJ. Maximizing the value of milk through separation technologies. J Dairy Sci. 82(10):2238-44 (1999). doi: https://doi.org/10.3168/jds.S0022-0302(99)75471-8.
9. Shomali T. Zataria multiflora and Gastrointestinal Tract Disorders. Dietary Interventions in Gastrointestinal Diseases. Elsevier. p. 209-12 (2019).
10. Mahdavi SA, Jafari SM, Ghorbani M, Assadpoor E. Spray-drying microencapsulation of anthocyanins by natural biopolymers: A review. Dry Technol. 32(5):509-18 (2014). doi: https://doi.org/10.1080/07373937.2013.839562.
11. Pavlath AE, Voisin A, Robertson GH. Pectin‐based biodegradable water insoluble films. Macromolecular Symposia: Wiley Online Library. p. 107-13 (1999).
12. Cabello SP, Takara EA, Marchese J, Ochoa NA. Influence of plasticizers in pectin films: Microstructural changes. Mater Chem Phys. 162:491-7 (2015). doi: https://doi.org/10.1016/j.matchemphys.2015.06.019.
13. Ghoshal G, Shivani. Thyme essential oil nano-emulsion/Tamarind starch/Whey protein concentrate novel edible films for tomato packaging. Food control. 138:108990 (2022). doi: https://doi.org/10.1016/j.foodcont.2022.108990.
14. Loureiro J, Miguel SP, Seabra IJ, Ribeiro MP, Coutinho P. Single-step self-assembly of zein–honey–chitosan nanoparticles for hydrophilic drug incorporation by flash nanoprecipitation. Pharmaceutics. 14(5):920 (2022). doi: https://doi.org/10.3390/pharmaceutics14050920.
15. Shi W-J, Tang C-H, Yin S-W, Yin Y, Yang X-Q, Wu L-Y, et al. Development and characterization of novel chitosan emulsion films via pickering emulsions incorporation approach. Food Hydrocoll. 52:253-64 (2016). doi: https://doi.org/10.1016/j.foodhyd.2015.07.008.
16. Furlan GR, Silvestre WP, Baldasso C. Pectin-based films with thyme essential oil: production, characterization, antimicrobial activity, and biodegradability. Polímeros. 33:e20230029 (2023). doi: https://doi.org/10.1590/0104-1428.20230053.
17. Tavares L, Souza HK, Gonçalves MP, Rocha CM. Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocoll. 113:106471 (2021). doi: https://doi.org/10.1016/j.foodhyd.2020.106471.
18. Chevalier Y, Bolzinger M-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf A: Physicochem Eng Asp. 439:23-34 (2013). doi: https://doi.org/10.1016/j.colsurfa.2013.02.054.
19. Binks BP. Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci. 7(1-2):21-41 (2002). doi: https://doi.org/10.1016/S1359-0294(02)00008-0.
20. Shen Y, Ni Z-J, Thakur K, Zhang J-G, Hu F, Wei Z-J. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int J Biol Macromol. 181:528-39 (2021). doi: https://doi.org/10.1016/j.ijbiomac.2021.03.133.
21. Wu Y, Wang X, Zhou Y, Wu S, Peng L, Tian J, et al. Gelatin/cinnamon essential oil pickering emulsion crosslinking composite films with enhanced mechanical and antibacterial performance. J Food Eng. 371:111992 (2024). doi: https://doi.org/10.1016/j.jfoodeng.2024.111992.
22. Vartiainen J, Tammelin T, Pere J, Tapper U, Harlin A. Biohybrid barrier films from fluidized pectin and nanoclay. Carbohydr Polym. 82(3):989-96 (2010). doi: https://doi.org/10.1016/j.carbpol.2010.06.031.
23. McHugh TH, Aujard JF, Krochta J. Plasticized whey protein edible films: water vapor permeability properties. J Food Sci. 59(2):416-9 (1994). doi: https://doi.org/10.1111/j.1365-2621.1994.tb06980.x.
24. Pérez-Gago MB, Krochta JM. Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. J Agric Food Chem. 49(2):996-1002 (2001). doi: https://doi.org/10.1021/jf000615f.
25. Silva K, Fonseca T, Amado L, Mauro M. Physicochemical and microstructural properties of whey protein isolatebased films with addition of pectin. Food Packag Shelf Life 16: 122–128. (2018).
26. Noori S, Zeynali F, Almasi H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food control. 84:312-20 (2018). doi: https://doi.org/10.1016/j.foodcont.2017.08.015.
27. Almasi H, Azizi S, Amjadi S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 99:105338 (2020). doi: https://doi.org/10.1016/j.foodhyd.2019.105338.
28. Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 120(1):193-8 (2010). doi: https://doi.org/10.1016/j.foodchem.2009.10.006.
29. Zhou J, Wang S, Gunasekaran S. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J Food Sci. 74(7):N50-N6 (2009). doi: https://doi.org/10.1111/j.1750-3841.2009.01270.x.
30. ASTM. Standard test methods for water vapor transmission of material. E96-95. Annual book of ASTM. American Society for Testing and Materials Philadelphia; (1995).
31. Cuq B, Gontard N, CUQ JL, Guilbert S. Functional properties of myofibrillar protein‐based biopackaging as affected by film thickness. J Food Sci. 61(3):580-4 (1996). doi: https://doi.org/10.1111/j.1365-2621.1996.tb13163.x.
32. Ghanbarzadeh B, Oromiehi A. Biodegradable biocomposite films based on whey protein and zein: Barrier, mechanical properties and AFM analysis. Int J Biol Macromol. 43(2):209-15 (2008). doi: https://doi.org/10.1016/j.ijbiomac.2008.05.006.
33. Huang X, Kakuda Y, Cui W. Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocoll. 15(4-6):533-42 (2001). doi: https://doi.org/10.1016/S0268-005X(01)00091-1.
34. Hosseini VS, Najaf Najafi M, Mohammadi Sani A, Koocheki A. Effect of Lallemantia royleana seed gum and whey protein concentrate on stability of oil-in-water emulsion. Res Innov Food Sci Technol. 2(2):109-20 (2013). doi: 10.22101/JRIFST.2013.09.16.221.
35. Rodrigues DC, Cunha AP, Brito ES, Azeredo HM, Gallao MI. Mesquite seed gum and palm fruit oil emulsion edible films: Influence of oil content and sonication. Food Hydrocoll. 56:227-35 (2016). doi: https://doi.org/10.1016/j.foodhyd.2015.12.018.
36. Nicolai T, Britten M, Schmitt C. β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocoll. 25(8):1945-62 (2011). doi: https://doi.org/10.1016/j.foodhyd.2011.02.006.
37. Totosaus A, Montejano JG, Salazar JA, Guerrero I. A review of physical and chemical protein‐gel induction. Int J Food Sci Technol. 37(6):589-601 (2002). doi: https://doi.org/10.1046/j.1365-2621.2002.00623.x.
38. Belgheisi S, Azizi M, Zohourian G, Hadian Z. Assessment of physical properties of whey protein-monoglyceride edible film and its coating effect on the moisture loss and sensory properties of fresh mutton. Iran J Nutr Sci Food Technol. 3(3):83-93 (2008).
39. Acosta S, Jiménez A, Cháfer M, González-Martínez C, Chiralt A. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocoll. 49:135-43 (2015). doi: https://doi.org/10.1016/j.foodhyd.2015.03.015.
40. Cheng J, Velez FJ, Singh P, Cui L. Fabrication, characterization, and application of pea protein-based edible film enhanced by oregano essential oil (OEO) micro- or nano-emulsion. Current Research in Food Science. 8:100705 (2024). doi: https://doi.org/10.1016/j.crfs.2024.100705.
41. Haghighatpanah N, Omar-Aziz M, Gharaghani M, Khodaiyan F, Hosseini SS, Kennedy JF. Effect of mung bean protein isolate/pullulan films containing marjoram (Origanum majorana L.) essential oil on chemical and microbial properties of minced beef meat. Int J Biol Macromol. 201:318-29 (2022). doi: https://doi.org/10.1016/j.ijbiomac.2022.01.023.
42. Cai L, Wang Y. Physicochemical and Antioxidant Properties Based on Fish Sarcoplasmic Protein/Chitosan Composite Films Containing Ginger Essential Oil Nanoemulsion. Food Bioproc Tech. 14(1):151-63 (2021). doi: 10.1007/s11947-020-02564-0.
43. Zhang X, Liu D, Jin TZ, Chen W, He Q, Zou Z, et al. Preparation and characterization of gellan gum-chitosan polyelectrolyte complex films with the incorporation of thyme essential oil nanoemulsion. Food Hydrocoll. 114:106570 (2021). doi: https://doi.org/10.1016/j.foodhyd.2020.106570.
44. Jiménez A, Fabra MJ, Talens P, Chiralt A. Influence of hydroxypropylmethylcellulose addition and homogenization conditions on properties and ageing of corn starch based films. Carbohydr Polym. 89(2):676-86 (2012). doi: https://doi.org/10.1016/j.carbpol.2012.03.075.
45. Yoo S, Krochta JM. Whey protein–polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties. J Sci Food Agric. 91(14):2628-36 (2011). doi: https://doi.org/10.1002/jsfa.4502.
46. Silva K, Mauro M, Gonçalves M, Rocha C. Synergistic interactions of locust bean gum with whey proteins: effect on physicochemical and microstructural properties of whey protein-based films. Food Hydrocoll. 54:179-88 (2016). doi: https://doi.org/10.1016/j.foodhyd.2015.09.028.
47. Jo C, Kang H, Lee NY, Kwon JH, Byun MW. Pectin-and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation. Radiat Phys Chem. 72(6):745-50 (2005). doi: https://doi.org/10.1016/j.radphyschem.2004.05.045.
48. Weller CL, Gennadios A, Saraiva RA. Edible bilayer films from zein and grain sorghum wax or carnauba wax. LWT-Food Sci &Tech. 31(3):279-85 (1998). doi: https://doi.org/10.1006/fstl.1997.9998.
49. Bazaria B, Kumar P. Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Biosci. 14:21-7 (2016). doi: https://doi.org/10.1016/j.fbio.2015.11.002.
50. R NFN, Nur Hanani ZA. Physicochemical characterization of kappa-carrageenan (Euchema cottoni) based films incorporated with various plant oils. Carbohydr Polym. 157:1479-87 (2017). doi: https://doi.org/10.1016/j.carbpol.2016.11.026.
51. Espitia PJP, Du W-X, de Jesús Avena-Bustillos R, Soares NdFF, McHugh TH. Edible films from pectin: Physical-mechanical and antimicrobial properties-A review. Food Hydrocoll. 35:287-96 (2014). doi: https://doi.org/10.1016/j.foodhyd.2013.06.005.
52. Ramos ÓL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, et al. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll. 30(1):110-22 (2013). doi: https://doi.org/10.1016/j.foodhyd.2012.05.001.
53. Wang L-J, Yin S-W, Wu L-Y, Qi J-R, Guo J, Yang X-Q. Fabrication and characterization of Pickering emulsions and oil gels stabilized by highly charged zein/chitosan complex particles (ZCCPs). Food Chem. 213:462-9 (2016). doi: https://doi.org/10.1016/j.foodchem.2016.06.119.
54. Rodríguez M, Osés J, Ziani K, Maté JI. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Int Food Res. 39(8):840-6 (2006). doi: https://doi.org/10.1016/j.foodres.2006.04.002.