ارزیابی خواص آنتی اکسیدانی و سیتوتوکسیک 1و2و3-بنزنتریول و 1و5-آنهیدرو-6-داکسی هگزو-2و3-دی اولوز استخراج شده از کاملیا سیننسیس

نویسندگان
1 مؤسسه فناوری و علوم کارونیا، کویمباتور، تامیل نادو، هند
2 گروه بیوتکنولوژی دریایی، دانشگاه AMET، چنای، تامیل نادو، هند
3 گروه علوم غذایی، دانشکده کشاورزی، دانشگاه بصره، بصره، عراق
4 بخش آناتومی، کالج و بیمارستان پزشکی ساویتا، موسسه علوم پزشکی و فنی ساویتا، تامیل نادو، هند
5 برنامه یکپارچه نظارت بر بیماری، پوداچری، هند
6 دانشکده کشاورزی، دانشگاه میسان، العماره، عراق
7 مرکز تحقیقات سلولی و مولکولی، دانشگاه علوم پزشکی یاسوج، یاسوج، ایران
چکیده
خواص آنتی اکسیدانی مواد طبیعی نویدبخش مبارزه با اختلالات ناشی از استرس اکسیداتیو است. دو ماده از قبیل، 1،2،3-Benzenetriol و 1,5-anhydro-6-deoxyhexo-2،3-diulose (ADD)، مشتق شده از Camellia sinensis، برای پتانسیل آنتی اکسیدانی آنها مورد بررسی قرار گرفت. این مطالعه با هدف ارزیابی توانایی 1،2،3-Benzenetriol و ADD در خنثی سازی رادیکال های آزاد و تنظیم بیومارکرهای استرس اکسیداتیو انجام شد. ترکیبات فعال با جداسازی آنها از برگ و گل گیاه کاملیا سیننسیس با استفاده از کروماتوگرافی ستونی با مخلوط اتیل استات و هگزان به دست آمد. خواص آنتی اکسیدانی آنها با استفاده از تکنیک های GC-MS ارزیابی شد. فراکسیون های زیست فعال، یعنی CSLBF-2 و CSFBF-2، به عنوان دارای بالاترین درصد مهار رادیکال های آزاد DPPH شناسایی شدند. غلظت مهاری برای CSLBF-2 و CSFBF-2 به ترتیب 132 و 147 میکروگرم در میلی لیتر در لیتر تعیین شد. مطالعات اتصال مولکولی با استفاده از نرم افزار GOLD برای ارزیابی تعاملات اتصال با NFE2L2، ژنی که در دفاع در برابر استرس اکسیداتیو نقش دارد، انجام شد. CSLBF-2 و CSFBF-2 درصد مهار قابل توجهی از رادیکال های آزاد DPPH را با مقادیر 05/92 و 33/88 درصد نشان دادند. مطالعات اتصال مولکولی برهمکنش‌های اتصال سودمند با NFE2L2 را نشان داد که مکانیسم‌های آنتی اکسیدانی بالقوه را نشان می‌دهد. قابل ذکر است که 1،2،3-Benzenetriol قویترین انرژی اتصال را در بین ترکیبات مورد مطالعه نشان داد. علاوه بر این، ترکیبات خالص شده سمیت سلولی قابل توجهی را در برابر رده سلولی Vero نشان دادند و ویژگی‌های فراهمی زیستی دارویی مطلوبی از خود نشان دادند. این مطالعه نتیجه می گیرد که 1،2،3-Benzenetriol و ADD خواص آنتی اکسیدانی امیدوارکننده و پتانسیل توسعه به عوامل دارویی جدید را نشان می دهند. اثربخشی آن‌ها در خنثی‌سازی رادیکال‌های آزاد و تنظیم بیومارکرهای استرس اکسیداتیو، راه امیدوارکننده‌ای را برای تحقیقات بیشتر و توسعه دارویی نشان می‌دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Assessment of the antioxidant and cytotoxic properties of 1,2,3-Benzenetriol and 1,5-Anhydro-6-deoxyhexo-2,3-diulose extracted from Camellia sinensis.

نویسندگان English

Steffi Avarave 1
Jibu Thomas 1
Radha Vijayaraj 2
Ammar B. Altemimi 3
Kareem Altaff 2
Lakshmanan Govindan 4
Selvakumari Jeyaperummal 5
Azalldeen Kazal Alzubaidi 6
Sajad Ghaderi 7
1 Coimbatore, Tamil Nadu, India.
2 Marine Biotechnology Department, AMET University, Chennai-603112, Tamil Nadu, India.
3 Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq.
4 Anatomy Department, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu 602 105, India.
5 Integrated Disease Surveillance Program, Puducherry – 605 001, India.
6 College of Agriculture, University of Misan, Al-Amara 62001, Iraq
7 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
چکیده English

Antioxidant qualities of natural substances hold promise for combating oxidative stress-related disorders. Two such substances, 1,2,3-Benzenetriol and 1,5-anhydro-6-deoxyhexo-2,3-diulose (ADD), derived from Camellia sinensis, were investigated for their antioxidant potential. The study aimed to evaluate the ability of 1,2,3-Benzenetriol and ADD to neutralize free radicals and regulate biomarkers of oxidative stress. Active compounds were obtained by isolating them from leaves and flowers of Camellia sinensis using column chromatography with a mixture of ethyl acetate and hexane. Their antioxidant properties were assessed using GC-MS techniques. Bioactive fractions, namely CSLBF-2 and CSFBF-2, were identified as having the highest inhibition percentages of DPPH free radicals. Inhibitory concentrations were determined at 132 and 147 µg mL-1 for CSLBF-2 and CSFBF-2, respectively. Molecular docking studies were conducted using GOLD software to assess binding interactions with NFE2L2, a gene implicated in defending against oxidative stress. CSLBF-2 and CSFBF-2 demonstrated significant inhibition percentages of DPPH free radicals, with values of 92.05% and 88.33%, respectively. Molecular docking studies revealed beneficial binding interactions with NFE2L2, suggesting potential antioxidant mechanisms. Notably, 1,2,3-Benzenetriol exhibited the strongest binding energy among the studied compounds. Additionally, purified compounds displayed considerable cytotoxicity against the Vero cell line and exhibited favorable drug bioavailability properties. The study concludes that 1,2,3-Benzenetriol and ADD exhibit promising antioxidant properties and potential for development into novel pharmaceutical agents. Their effectiveness in neutralizing free radicals and regulating oxidative stress biomarkers suggests a promising avenue for further research and pharmaceutical development.

کلیدواژه‌ها English

Bioactive compounds
Camellia sinensis
Cytotoxicity
Free radicals
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., Lightfoot D.A., 2017. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants. 6, 42. doi: 10.3390/plants6040042
Anderson, J. T., Huang, K.M., Lustberg, M.B., Sparreboom, A, Hu. S., 2020. Solute carrier transportome in chemotherapy-induced adverse drug reactions. Targets of Cancer Diagnosis and Treatment: Ion Transport in Tumor Biology. 177-215.
Ashokkumar, K., Pandian, A., Murugan, M., Dhanya, M.K., Sathyan, T., Sivakumar, P., Raj, S., Warkentin, T.D., 2020. Profiling bioactive flavonoids and carotenoids in select south Indian spices and nuts. Nat. Prod. Res. 34, 1306-1310. doi: 10.1080/14786419.2018.1557179
Ashraf, M. A. 2020. Phytochemicals as potential anticancer drugs: time to ponder nature’s bounty. BioMed Research international 2020
Brinkman, U. A.,. de Vries, T.G., Kuroda, R., 1973. Thin-layer chromatographic data for inorganic substances. J. Chrom. A 85, 87-520. doi: https://doi.org/10.1016/S0021-9673(01)83160-5
Chaudhary, P., Janmeda, P., 2022. Quantification of phytochemicals and in vitro antioxidant activities from various parts of Euphorbia neriifolia Linn. J. Appl. Biol. Biotech. 10, 133-145.
Chaudhary, V., Chowdhury, R., Thukral, P., Pathania, D., Saklani, S., Rustagi, S., Kaushik, A., 2023. Biogenic green metal nano systems as efficient anti-cancer agents. Environ. Res. 115933.
Ciampi, F., Sordillo, L., Gandy, J., Caroprese, M., Sevi, A., Albenzio, M., Santillo, A., 2020. Evaluation of natural plant extracts as antioxidants in a bovine in vitro model of oxidative stress. J. Dairy Sci. 103, 8938-8947.
Coêlho, M. L., Islam, M. T., Laylson da Silva Oliveira, G., Oliveira Barros de Alencar, M. V., Victor de Oliveira Santos, J., Campinho dos Reis, A., Amélia de Carvalho Melo-Cavalcante, A., 2022. Cytotoxic and antioxidant properties of natural bioactive monoterpenes nerol, estragole, and 3, 7-dimethyl-1-octanol. Adv. Pharmacol. Pharmac. Sci. 2022.
Fernando, C. D., Soysa, P., 2015. Extraction Kinetics of phytochemicals and antioxidant activity during black tea (Camellia sinensis L.) brewing. Nutrition. 14, 1-7.
Hariprasath, L., Jegadeesh, R., Arjun, P., Raaman, N., 2015. In vitro propagation of Senecio candicans DC and comparative antioxidant properties of aqueous extracts of the in vivo plant and in vitro-derived callus. South Afr. J. Botany. 98, 134-141. doi: https://doi.org/10.1016/j.sajb.2015.02.011
He, F., Ru, X., Wen, T., 2020. NRF2, a Transcription Factor for Stress Response and Beyond. Int. J. Mol. Sci. 21. doi: 10.3390/ijms21134777
Iranshahy, M., Iranshahi, M., Abtahi, S.R., Karimi, G., 2018. The role of nuclear factor erythroid 2-related factor 2 in hepatoprotective activity of natural products: A review. Food Chem. Toxicol. 120, 261-276. doi: 10.1016/j.fct.2018.07.024
Kim, S., Kim, M., Kang, M.-C., Lee, H. H. L., Cho, C.H., Choi, I., Park, Y., Lee, S.-H., 2021a. Antioxidant Effects of Turmeric Leaf Extract against Hydrogen Peroxide-Induced Oxidative Stress In Vitro in Vero Cells and In Vivo in Zebrafish. Antioxidants. 10, 112.
Kim, S., Kim, M., Kang, M. C., Lee, H. H. L., Cho, C. H., Choi, I., Park, Y., Lee, S.H., 2021b. Antioxidant Effects of Turmeric Leaf Extract against Hydrogen Peroxide-Induced Oxidative Stress In Vitro in Vero Cells and In Vivo in Zebrafish. Antioxidants. 10, doi: 10.3390/antiox10010112
Koch, W., Zagórska, J., Marzec, Z., Kukula-Koch, W., 2019. Applications of Tea (Camellia sinensis) and its Active Constituents in Cosmetics. Molecules. 24, 4277. doi: 10.3390/molecules24234277
Kpemissi, M., Eklu-Gadegbeku, K., Veerapur, V.P., Negru, M., Taulescu, M., Chandramohan, V., Hiriyan, J., Banakar, S.M., Nv, T., Suhas, D.S., Puneeth, T.A., Vijayakumar, S., Metowogo, K., Aklikokou, K., 2019. Nephroprotective activity of Combretum micranthum G. Don in cisplatin induced nephrotoxicity in rats: In-vitro, in-vivo and in-silico experiments. Biomed. Pharmacoth. 116, 108961. doi: 10.1016/j.biopha.2019.108961
Kumar, P. S., Premnath, D., Obadiah, A., Durairaj, A., Ramanathan, S., Vasanthkumar, S., 2019. Synthesis, Structure Characterization, and Biological Evaluation of 3-Amino-5-(5-Oxo-5H-Benzo [a] Phenothiazin-6-Ylamino) Benzoic Acid Derivatives via Molecular Docking, Cytotoxicity, and Antioxidant Studies. Curr. Pharmac. Rep. 5, 440-459.
Lakshmanan, G., Selvam, L., Altemimi, A.B., Baldelli, A., Bharathi, A., Gopalakrishnan, B., Karthik, L., Saravanan, D., Kavitha, M., Mohammed, M.J., 2022. Phytochemical screening of ethanolic extracts of Cuminum cyminum L. seeds along with the evaluation of antidiabetic properties by molecular docking approach. Nat. Prod. Res., 37, 681-686.
Li, C., Wang, J., Wang, Y., Gao, H., Wei, G., Huang, Y., Yu, H., Gan, Y., Wang, Y., Mei, L., 2019. Recent progress in drug delivery. Acta Pharmac. Sinica B. 9, 1145-1162.
Lobo, V., Patil, A., Phatak, A., Chandra, N., 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmac. Rev. 4, 118-126. doi: 10.4103/0973-7847.70902
Mihailović, M., Dinić, S., Arambašić Jovanović, J., Uskoković, A., Grdović, N., Vidaković, M., 2021. The influence of plant extracts and phytoconstituents on antioxidant enzymes activity and gene expression in the prevention and treatment of impaired glucose homeostasis and diabetes complications. Antioxidants. 10, 480.
Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., Devasagayam, T.P., 2007. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clinic. Biochem. Nutr. 40, 163-173. doi: 10.3164/jcbn.40.163
Mohammed, G. J., Kadhim, M.J., Hameed, I.H., 2016. Proteus species: Characterization and herbal antibacterial: A review. Int. J. Pharm. Phytochem. Res. 8, 1844-1854.
Monobe, M., Ema, K., Kato, F., Maeda-Yamamoto, M., 2008. Immunostimulating Activity of a Crude Polysaccharide Derived from Green Tea (Camellia sinensis) Extract. J. Agric. Food Chem. 56, 1423-1427. doi: 10.1021/jf073127h
Motyka, S., Jafernik, K., Ekiert, H., Sharifi-Rad, J., Calina, D., Al-Omari, B., Cho, W. C., 2023. Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomed. Pharmac. 158, 114145.
Mutha, R. E., Tatiya, A.U., Surana, S.J., 2021. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Futur. J. Pharm. Sci. 7, 25. doi: 10.1186/s43094-020-00161-8
Pham, H. N. T., Vuong, Q.V., Bowyer, M.C., Scarlett, C.J., 2020. Phytochemicals derived from Catharanthus roseus and their health benefits. Technologies 8, 80.
Prasanth, M. I., Sivamaruthi, B.S., Chaiyasut, C., Tencomnao, T., 2019. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 11, 474. doi: 10.3390/nu11020474
Qadir, A., Aqil, M., Ali, A., Ahmad, F.J., Ahmad, S., Arif, M., Khan, N., 2020. GC-MS analysis of the methanolic extracts of Smilax china and Salix alba and their antioxidant activity. Turkish J. Chem. 44, 352-363. doi: 10.3906/kim-1907-5
Raks, V., Al-Suod, H., Buszewski, B., 2018. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques. Chromatographia 81, 189-202. doi: 10.1007/s10337-017-3405-0
Rampogu, S., Baek, A., Park, C., Parate, S., Parameswaran, S., Park, Y., Shaik, B., Kim, J.H., Park, S.J., Lee, K.W., 2019. Discovery of Small Molecules that Target Vascular Endothelial Growth Factor Receptor-2 Signalling Pathway Employing Molecular Modelling Studies. Cells 8, 269. doi: 10.3390/cells8030269
Salehi, B., Azzini, E., Zucca,P., Varoni E.M., Anil Kumar, N.V., Dini, L., Panzarini, E., Rajkovic, J., Valere Tsouh Fokou, P., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., El Beyrouthy, M., Setzer, W.N., Polito, L., Iriti, M., Sureda, A., Quetglas-Llabrés, M.M., Martorell, M., Martins, N., Sharifi-Rad, M., Estevinho, L.M., Sharifi-Rad, J., 2020. Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Appl. Sci. 10, 947.
Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K., Latha, L.Y., 2011. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complem. Altern. Medic. 8, 1-10.
Stagos, D. 2019. Antioxidant activity of polyphenolic plant extracts. Antioxidants. 9, 19. https://doi.org/10.3390/antiox9010019
Suleman, M., Khan, A., Baqi, A., Kakar, M.S., Ayub, M., 2019. Antioxidants, its role in preventing free radicals and infectious diseases in human body. Pure Appl. Biol. 8, 380-388.
Shahbaz, A., Iqbal, J., Abbasi, B. A., Akhtar, W., Fatima, I., Zahra, S. A., Cho, W. C., 2022. Antioxidant, Anticancer, and PXR-Dependent CYP 3 A 4 Attributes of Schweinfurthia papilionacea (Burm. f.) Boiss., Tricholepis glaberrima DC. and Viola stocksii Boiss. Oxidat. Med. Cell. Long. 2022.
Sharifi-Rad, J., Seidel, V., Izabela, M., Monserrat-Mequida, M., Sureda, A., Ormazabal, V., Zuniga, F.A., Mangalpady, S.S., Pezzani, R., Ydyrys, A., Tussupbekova, G., Martorell, M., Calina, D., Cho, W. C., 2023. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Comm. Signal. 21, 1-18.
Sutanto, H., Susanto, B.H., Nasikin, M., 2019. Solubility and Antioxidant Potential of a Pyrogallol Derivative for Biodiesel Additive. Molecules 24, 2439.
Tariq, A. L., Reyaz, A. L., 2013. Antioxidant activity of Camellia sinensis leaves. Int. J. Curr. Microb. Appl. Sci. 2, 40-46.
Vijayaraj, R., Sri Kumaran, N., Altaff, K., Ramadevi, S., Sherlin Rosita, A., 2019. In silico pharmacokinetics and molecular docking of novel bioactive compound (11-methoxy-2-methyltridecane-4-ol) for inhibiting carbohydrates hydrolyzing enzyme. J. Biol. Act. Prod. Nature 9, 445-456.
Yang, Z., Tu, Y., Baldermann, S., Dong, F., Xu, Y., Watanabe, N., 2009. Isolation and identification of compounds from the ethanolic extract of flowers of the tea (Camellia sinensis) plant and their contribution to the antioxidant capacity. LWT-Food Sci. Technol. 42, 1439-1443.
Zhao, H., Eguchi, S., Alam, A., Ma, D., 2017. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. American journal of physiology. Lung Cell. Molec. Physiol. 312, L155-l162. doi: 10.1152/ajplung.00449.2016