[1] Hosseini Adarmanabadi, S. M. H., Karami Gilavand, H., Taherkhani, A., Sadat Rafiei, S. K., Shahrokhi, M., Faaliat, S., … Deravi, N. (2023). Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neuroscience Reports, 14, 1–20. doi:10.1016/j.ibneur.2022.10.015
[2] Xia, T., Xue, C., & Wei, Z. (2021). Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends in Food Science & Technology, 107, 1–15. doi:10.1016/j.tifs.2020.11.019
[3] Gao, J., Bu, X., Zhou, S., Wang, X., Bilal, M., Hassan, F. U., Chelgani, S. C. (2022). Pickering emulsion prepared by nano-silica particles – A comparative study for exploring the effect of various mechanical methods. Ultrasonics Sonochemistry, 83, 105928. doi:10.1016/j.ultsonch.2022.105928
[4] Cheng, Y., Cai, X., Zhang, X., Zhao, Y., Song, R., Xu, Y., & Gao, H. (2024). Applications in Pickering emulsions of enhancing preservation properties: Current trends and future prospects in active food packaging coatings and films. Trends in Food Science & Technology, 151, 104643. doi:10.1016/j.tifs.2024.104643
[5] Orona-Tamayo, D., & Paredes-López, O. (2024). Chia—The New Golden Seed for the 21st Century: Nutraceutical Properties and Technological Uses. In Sustainable Protein Sources (pp. 443–470). Elsevier. doi:10.1016/B978-0-323-91652-3.00005-8
[6] Mensah, E. O., Oludipe, E. O., Gebremeskal, Y. H., Nadtochii, L. A., & Baranenko, D. (2024). Evaluation of extraction techniques for chia seed mucilage; A review on the structural composition, physicochemical properties and applications. Food Hydrocolloids, 153, 110051. doi:10.1016/j.foodhyd.2024.110051
[7] Karimi Sani, I., Masoudpour-Behabadi, M., Alizadeh Sani, M., Motalebinejad, H., Juma, A. S. M., Asdagh, A., … Mohammadi, F. (2023). Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chemistry, 405, 134964. doi:10.1016/j.foodchem.2022.134964
[8] Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydrate Polymer Technologies and Applications, 2, 100024. doi:10.1016/j.carpta.2020.100024
[9] Yildirim-Yalcin, M., Tornuk, F., & Toker, O. S. (2022). Recent advances in the improvement of carboxymethyl cellulose-based edible films. Trends in Food Science & Technology, 129, 179–193. doi:10.1016/j.tifs.2022.09.022
[10] Erdem, B. G., & Kaya, S. (2022). Characterization and application of novel composite films based on soy protein isolate and sunflower oil produced using freeze drying method. Food Chemistry, 366, 130709. doi:10.1016/j.foodchem.2021.130709
[11] Xiao, J., Zhang, M., Wang, W., Teng, A., Liu, A., Ye, R., Wu, X. (2019). An Attempt of Using β‐Sitosterol‐Corn Oil Oleogels to Improve Water Barrier Properties of Gelatin Film. Journal of Food Science, 84(6), 1447–1455. doi:10.1111/1750-3841.14621
[12] Sun, J., Wang, L., Chen, H., & Yin, G. (2023). Preparation and Application of Edible Film Based on Sodium Carboxymethylcellulose-Sodium Alginate Composite Soybean Oil Body. Coatings, 13(10), 1716. doi:10.3390/coatings13101716
[13] Mirzaee Moghaddam, H., & Rajaei., A. (2021). Effect of Pomegranate Seed Oil Encapsulated in Chitosan-capric Acid Nanogels Incorporating Thyme Essential Oil on Physicomechanical and Structural Properties of Jelly Candy. Journal of Agricultural Machinery, 11(2), 37-49. doi:10.22067/jam.v4i1.33163
[14] Amalia, A. E., Syarifuddin, A., & Langkong, J. (2023). Physical mechanical properties of carrageenan/gelatine based edible film with addition of canola oil and gluten. In Jurnal Teknologi (Vol. 82, p. 040007). doi:10.1063/5.0119367
[15] Sibele Santos, F., da Silva Cardoso, P., Egea, M. B., Quintal Martínez, J. P., Segura Campos, M. R., & Otero, D. M. (2023). Chia mucilage carrier systems: A review of emulsion, encapsulation, and coating and film strategies. Food Research International, 172, 113125. doi:10.1016/j.foodres.2023.113125
[16] Niu, H., Wang, W., Dou, Z., Chen, X., Chen, X., Chen, H., & Fu, X. (2023). Multiscale combined techniques for evaluating emulsion stability: A critical review. Advances in Colloid and Interface Science, 311, 102813. doi:10.1016/j.cis.2022.102813
[17] Sibele Santos, F., Romani, V. P., da Silva Filipini, G., & G. Martins, V. (2020). Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability. Polymer Engineering & Science, 60(9), 2214–2223. doi:10.1002/pen.25464
[18] Mizaee Moghaddam, H. (2019). Investigation of PhysicoMechanical Properties of Functional Gummy Candy Fortified with Encapsulated Fish Oil in Chitosan-Stearic Acid Nanogel by Pickering Emulsion. Food Science and Technology International. Retrieved from http://fsct.modares.ac.ir/article-7-34530-en.html
[19] Vicente, J., Pereira, L. J. B., Bastos, L. P. H., de Carvalho, M. G., & Garcia-Rojas, E. E. (2018). Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovalbumin or tween 80: Droplet size distribution, rheological behavior and stability. International Journal of Biological Macromolecules, 120, 339–345. doi:10.1016/j.ijbiomac.2018.08.041
[20] Amiri, Z. R., Nemati, A., Tirgarian, B., Dehghan, B., & Nasiri, H. (2021). Influence of stinging nettle (Urtica dioica L.) extract-loaded nano-emulsion on the storage stability and antioxidant attributes of Doogh (Traditional Iranian yoghurt beverage). Journal of Food Measurement and Characterization, 15(1), 437–448. doi:10.1007/s11694-020-00647-2
[21] Rahman, J. M. H., Shiblee, M. N. I., Ahmed, K., Khosla, A., Kawakami, M., & Furukawa, H. (2020). Rheological and mechanical properties of edible gel materials for 3D food printing technology. Heliyon, 6(12), e05859. doi:10.1016/j.heliyon.2020.e05859
[22] Chang, P. R., Yu, J., & Ma, X. (2009). Fabrication and Characterization of Sb 2 O 3 /Carboxymethyl Cellulose Sodium and the Properties of Plasticized Starch Composite Films. Macromolecular Materials and Engineering, 294(11), 762–767. doi:10.1002/mame.200900138
[23] Li, C., Wang, L., & Xue, F. (2019). Effects of Conjugation between Proteins and Polysaccharides on the Physical Properties of Emulsion‐Based Edible Films. Journal of the American Oil Chemists’ Society, 96(11), 1249–1263. doi:10.1002/aocs.12278
[24] Moore, M. A., & Akoh, C. C. (2017). Enzymatic Interesterification of Coconut and High Oleic Sunflower Oils for Edible Film Application. Journal of the American Oil Chemists’ Society, 94(4), 567–576. doi:10.1007/s11746-017-2969-z
[25] Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161–166. doi:10.1016/j.foodchem.2010.02.033
[26] Álvarez, S., Weng, S., Álvarez, C., Marcet, I., Rendueles, M., & Díaz, M. (2021). A new procedure to prepare transparent, colourless and low-water-soluble edible films using blood plasma from slaughterhouses. Food Packaging and Shelf Life, 28, 100639. doi:10.1016/j.fpsl.2021.100639
[27] Kaewprachu, P., Osako, K., Tongdeesoontorn, W., & Rawdkuen, S. (2017). The effects of microbial transglutaminase on the properties of fish myofibrillar protein film. Food Packaging and Shelf Life, 12, 91–99. doi:10.1016/j.fpsl.2017.04.002
[28] Loi, C. C., Eyres, G. T., & Birch, E. J. (2019). Effect of mono- and diglycerides on physical properties and stability of a protein-stabilised oil-in-water emulsion. Journal of Food Engineering, 240, 56–64. doi:10.1016/j.jfoodeng.2018.07.016
[29] Hong, I. K., Kim, S. I., & Lee, S. B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry, 67, 123–131. doi:10.1016/j.jiec.2018.06.022
[30] Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117. doi:10.1016/j.cis.2020.102117
[31] Borrin, T. R., Georges, E. L., Moraes, I. C. F., & Pinho, S. C. (2016). Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico-chemical stability. Journal of Food Engineering, 169(1), 1–9. doi:10.1016/j.jfoodeng.2015.08.012
[32] Li, Y., & Xiang, D. (2019). Stability of oil-in-water emulsions performed by ultrasound power or high-pressure homogenization. PLOS ONE, 14(3), e0213189. doi:10.1371/journal.pone.0213189
[33] Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48(1), 44–49. doi:10.1016/j.ijbiomac.2010.09.014
[34] Xiao, J., Wang, W., Wang, K., Liu, Y., Liu, A., Zhang, S., & Zhao, Y. (2016). Impact of melting point of palm oil on mechanical and water barrier properties of gelatin-palm oil emulsion film. Food Hydrocolloids, 60, 243–251. doi:10.1016/j.foodhyd.2016.03.042
[35] Pérez-Mateos, M., Montero, P., & Gómez-Guillén, M. C. (2009). Formulation and stability of biodegradable films made from cod gelatin and sunflower oil blends. Food Hydrocolloids, 23(1), 53–61. doi:10.1016/j.foodhyd.2007.11.011
[36] Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishehkar, H. (2017). Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT - Food Science and Technology, 76, 33–39. doi:10.1016/j.lwt.2016.10.028
[37] Nilsuwan, K., Benjakul, S., & Prodpran, T. (2016). Influence of palm oil and glycerol on properties of fish skin gelatin-based films. Journal of Food Science and Technology, 53(6), 2715–2724. doi:10.1007/s13197-016-2243-7
[38] Valencia-Sullca, C., Vargas, M., Atarés, L., & Chiralt, A. (2018). Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids, 75, 107–115. doi:10.1016/j.foodhyd.2017.09.008
[39] Sani, I. K., Pirsa, S., & Tağı, Ş. (2019). Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polymer Testing, 79, 106004. doi:10.1016/j.polymertesting.2019.106004
[40] Akhter, R., Masoodi, F. A., Wani, T. A., & Rather, S. A. (2019). Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. International Journal of Biological Macromolecules, 137, 1245–1255. doi:10.1016/j.ijbiomac.2019.06.214
[41] Ebrahimzadeh, S., Bari, M. R., Hamishehkar, H., Kafil, H. S., & Lim, L.-T. (2021). Essential oils-loaded electrospun chitosan-poly(vinyl alcohol) nonwovens laminated on chitosan film as bilayer bioactive edible films. LWT, 144, 111217. doi:10.1016/j.lwt.2021.111217
[42] Galus, S., & Kadzińska, J. (2016). Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil. Food Technology and Biotechnology, 54(1). doi:10.17113/ftb.54.01.16.3889