بررسی امکان تولید امولسیون روغن گردو پایدار شده با موسیلاژ دانه چیا و کاربرد آن در فیلمهای خوراکی

نویسندگان
1 کارشناسی ارشد علوم و مهندسی صنایع غذایی، دانشکده کشاورزی،دانشگاه صنعتی شاهرود.
2 دانشیار،تکنولوژی موادغذایی،دانشکده کشاورزی،دانشگاه صنعتی شاهرود.
3 استادیار،مکانیک بیوسیستم،دانشکده کشاورزی،دانشگاه صنعتی شاهرود.
چکیده
در این پژوهش ابتدا امولسیونهای روغن گردو پایدار شده با موسیلاژ دانه چیا با درصد های روغن مختلف (10، 20، 30 و 50 درصد) به روش پیکرینگ تهیه شد. سپس از بهترین امولسیون در تهیه فیلم های خوراکی دو لایه و ترکیبی بر پایه سدیم کربوکسی متیل سلولز  استفاده شد و اثر این امولسیون روغن بر خواص فیزیکی(نفوذپذیری، زاویه تماس، کدورت، استحکام کششی، کرنش گسیختگی و مدول یانگ) فیلمهای تولیدی بررسی شد. نتایج نشان داد که امولسیون روغن گردو با 10 درصد روغن بیشترین پایداری را بعد از 14 روز نگهداری داشت. همچنین، اندازه قطرات (D50 ) امولسیون (10 درصد روغن) 886 نانومتر بود که درمحدوده زیر یک میکرومتر بود. سپس امولسیون روغن گردو پایدارشده با موسیلاژ دانه چیا (10 درصد روغن) به فیلمهای خوراکی بر پایه سدیم کربوکسی متیل سلولز به صورت دولایه و ترکیبی اضافه شد. نتایج نشان داد که افزودن امولسیون روغن گردو به فیلم سدیم کربوکسی متیل سلولز به صورت ترکیبی باعث افزایش کدورت و شاخص زردی نسبت به فیلم دولایه شد. هیچ اختلاف معناداری (p>0.05) در نفوذ پذیری بخار آب بین فیلم های دولایه و ترکیبی وجود نداشت اما فیلمهای حاوی روغن گردو نفوذپذیری به بخار آب کمتری نسبت به نمونه شاهد داشتند. نتایج حاکی از کاهش استحکام کششی در فیلم های دولایه و ترکیبی با افزودن امولسیون روغن گردو بود. همچنین فیلم دو لایه حاوی امولسیون روغن گردو کمترین مدول یانگ (68/41 مگاپاسکال) و بیشترین کرنش در نقطه گسیختگی (18/0) را داشت. به طور کلی، یافته های این تحقیق نشان داد که روغن ارزشمند گردو به فرم امولسیون پایدار شده با موسیلاژ دانه چیا در ساختار فیلم های خوراکی سدیم کربوکسی متیل سلولز می تواند علاوه بر ایجاد فیلم خوراکی باعث بهبود خواص فیزیکی فیلم ها نیز گردد.

 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of the possibility of producing a stabilized walnut oil emulsion with chia seed mucilage and its application in edible films

نویسندگان English

Arian Nahalkar 1
Ahmad Rajaei Najafabadi 2
hossein mirzaee moghaddam 3
1 Master of Food Science and Engineering, School of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
2 Associate Professor, School of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
3 Assistant Professor, School of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده English

In this study, walnut oil emulsions stabilized with chia seed mucilage with different oil percentages (10, 20, 30 and 50%) were prepared by the Pickering method. Then, the best emulsion was used in the preparation of bilayer and combined edible films based on sodium carboxymethyl cellulose, and the effect of this oil emulsion on the physical properties (permeability, contact angle, turbidity, tensile strength, strain at break and Young's modulus) of the produced films was investigated. The results showed that the walnut oil emulsion with 10% oil had the highest stability after 14 days. Moreover, the droplet size (D50) of the emulsion (10% oil) was 886 nm, which was in the range of below one micrometer. Then, the walnut oil emulsion stabilized with chia seed mucilage (10% oil) was added to the edible films based on sodium carboxymethyl cellulose in bilayer and combined form. The results showed that adding walnut oil emulsion to sodium carboxymethyl cellulose films in a combined form increased turbidity and yellowness index compared to the bilayer films. There was no significant difference (p>0.05) in water vapor permeability between the bilayer and combined films, but the films containing walnut oil had lower water vapor permeability than the control sample. The results indicated a decrease in tensile strength in the bilayer and combined films with the addition of walnut oil emulsion. Furthermore, the bilayer film containing walnut oil emulsion had the lowest Young's modulus (41.68 MPa) and the highest strain at break point (0.18). In general, the findings of this study showed that valuable walnut oil in the form of an emulsion stabilized with chia seed mucilage m in the structure of sodium carboxymethyl cellulose edible films not only can create an edible film, but also improve the physical properties of the films.

کلیدواژه‌ها English

Sodium carboxymethyl cellulose
Bilayer film
walnut oil
Chia seed mucilage
Physical properties
[1] Hosseini Adarmanabadi, S. M. H., Karami Gilavand, H., Taherkhani, A., Sadat Rafiei, S. K., Shahrokhi, M., Faaliat, S., … Deravi, N. (2023). Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neuroscience Reports, 14, 1–20. doi:10.1016/j.ibneur.2022.10.015
[2] Xia, T., Xue, C., & Wei, Z. (2021). Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends in Food Science & Technology, 107, 1–15. doi:10.1016/j.tifs.2020.11.019
[3] Gao, J., Bu, X., Zhou, S., Wang, X., Bilal, M., Hassan, F. U., Chelgani, S. C. (2022). Pickering emulsion prepared by nano-silica particles – A comparative study for exploring the effect of various mechanical methods. Ultrasonics Sonochemistry, 83, 105928. doi:10.1016/j.ultsonch.2022.105928
[4] Cheng, Y., Cai, X., Zhang, X., Zhao, Y., Song, R., Xu, Y., & Gao, H. (2024). Applications in Pickering emulsions of enhancing preservation properties: Current trends and future prospects in active food packaging coatings and films. Trends in Food Science & Technology, 151, 104643. doi:10.1016/j.tifs.2024.104643
[5] Orona-Tamayo, D., & Paredes-López, O. (2024). Chia—The New Golden Seed for the 21st Century: Nutraceutical Properties and Technological Uses. In Sustainable Protein Sources (pp. 443–470). Elsevier. doi:10.1016/B978-0-323-91652-3.00005-8
[6] Mensah, E. O., Oludipe, E. O., Gebremeskal, Y. H., Nadtochii, L. A., & Baranenko, D. (2024). Evaluation of extraction techniques for chia seed mucilage; A review on the structural composition, physicochemical properties and applications. Food Hydrocolloids, 153, 110051. doi:10.1016/j.foodhyd.2024.110051
[7] Karimi Sani, I., Masoudpour-Behabadi, M., Alizadeh Sani, M., Motalebinejad, H., Juma, A. S. M., Asdagh, A., … Mohammadi, F. (2023). Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chemistry, 405, 134964. doi:10.1016/j.foodchem.2022.134964
[8] Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydrate Polymer Technologies and Applications, 2, 100024. doi:10.1016/j.carpta.2020.100024
[9] Yildirim-Yalcin, M., Tornuk, F., & Toker, O. S. (2022). Recent advances in the improvement of carboxymethyl cellulose-based edible films. Trends in Food Science & Technology, 129, 179–193. doi:10.1016/j.tifs.2022.09.022
[10] Erdem, B. G., & Kaya, S. (2022). Characterization and application of novel composite films based on soy protein isolate and sunflower oil produced using freeze drying method. Food Chemistry, 366, 130709. doi:10.1016/j.foodchem.2021.130709
[11] Xiao, J., Zhang, M., Wang, W., Teng, A., Liu, A., Ye, R., Wu, X. (2019). An Attempt of Using β‐Sitosterol‐Corn Oil Oleogels to Improve Water Barrier Properties of Gelatin Film. Journal of Food Science, 84(6), 1447–1455. doi:10.1111/1750-3841.14621
[12] Sun, J., Wang, L., Chen, H., & Yin, G. (2023). Preparation and Application of Edible Film Based on Sodium Carboxymethylcellulose-Sodium Alginate Composite Soybean Oil Body. Coatings, 13(10), 1716. doi:10.3390/coatings13101716
[13] Mirzaee Moghaddam, H., & Rajaei., A. (2021). Effect of Pomegranate Seed Oil Encapsulated in Chitosan-capric Acid Nanogels Incorporating Thyme Essential Oil on Physicomechanical and Structural Properties of Jelly Candy. Journal of Agricultural Machinery, 11(2), 37-49. doi:10.22067/jam.v4i1.33163
[14] Amalia, A. E., Syarifuddin, A., & Langkong, J. (2023). Physical mechanical properties of carrageenan/gelatine based edible film with addition of canola oil and gluten. In Jurnal Teknologi (Vol. 82, p. 040007). doi:10.1063/5.0119367
[15] Sibele Santos, F., da Silva Cardoso, P., Egea, M. B., Quintal Martínez, J. P., Segura Campos, M. R., & Otero, D. M. (2023). Chia mucilage carrier systems: A review of emulsion, encapsulation, and coating and film strategies. Food Research International, 172, 113125. doi:10.1016/j.foodres.2023.113125
[16] Niu, H., Wang, W., Dou, Z., Chen, X., Chen, X., Chen, H., & Fu, X. (2023). Multiscale combined techniques for evaluating emulsion stability: A critical review. Advances in Colloid and Interface Science, 311, 102813. doi:10.1016/j.cis.2022.102813
[17] Sibele Santos, F., Romani, V. P., da Silva Filipini, G., & G. Martins, V. (2020). Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability. Polymer Engineering & Science, 60(9), 2214–2223. doi:10.1002/pen.25464
[18] Mizaee Moghaddam, H. (2019). Investigation of PhysicoMechanical Properties of Functional Gummy Candy Fortified with Encapsulated Fish Oil in Chitosan-Stearic Acid Nanogel by Pickering Emulsion. Food Science and Technology International. Retrieved from http://fsct.modares.ac.ir/article-7-34530-en.html
[19] Vicente, J., Pereira, L. J. B., Bastos, L. P. H., de Carvalho, M. G., & Garcia-Rojas, E. E. (2018). Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovalbumin or tween 80: Droplet size distribution, rheological behavior and stability. International Journal of Biological Macromolecules, 120, 339–345. doi:10.1016/j.ijbiomac.2018.08.041
[20] Amiri, Z. R., Nemati, A., Tirgarian, B., Dehghan, B., & Nasiri, H. (2021). Influence of stinging nettle (Urtica dioica L.) extract-loaded nano-emulsion on the storage stability and antioxidant attributes of Doogh (Traditional Iranian yoghurt beverage). Journal of Food Measurement and Characterization, 15(1), 437–448. doi:10.1007/s11694-020-00647-2
[21] Rahman, J. M. H., Shiblee, M. N. I., Ahmed, K., Khosla, A., Kawakami, M., & Furukawa, H. (2020). Rheological and mechanical properties of edible gel materials for 3D food printing technology. Heliyon, 6(12), e05859. doi:10.1016/j.heliyon.2020.e05859
[22] Chang, P. R., Yu, J., & Ma, X. (2009). Fabrication and Characterization of Sb 2 O 3 /Carboxymethyl Cellulose Sodium and the Properties of Plasticized Starch Composite Films. Macromolecular Materials and Engineering, 294(11), 762–767. doi:10.1002/mame.200900138
[23] Li, C., Wang, L., & Xue, F. (2019). Effects of Conjugation between Proteins and Polysaccharides on the Physical Properties of Emulsion‐Based Edible Films. Journal of the American Oil Chemists’ Society, 96(11), 1249–1263. doi:10.1002/aocs.12278
[24] Moore, M. A., & Akoh, C. C. (2017). Enzymatic Interesterification of Coconut and High Oleic Sunflower Oils for Edible Film Application. Journal of the American Oil Chemists’ Society, 94(4), 567–576. doi:10.1007/s11746-017-2969-z
[25] Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161–166. doi:10.1016/j.foodchem.2010.02.033
[26] Álvarez, S., Weng, S., Álvarez, C., Marcet, I., Rendueles, M., & Díaz, M. (2021). A new procedure to prepare transparent, colourless and low-water-soluble edible films using blood plasma from slaughterhouses. Food Packaging and Shelf Life, 28, 100639. doi:10.1016/j.fpsl.2021.100639
[27] Kaewprachu, P., Osako, K., Tongdeesoontorn, W., & Rawdkuen, S. (2017). The effects of microbial transglutaminase on the properties of fish myofibrillar protein film. Food Packaging and Shelf Life, 12, 91–99. doi:10.1016/j.fpsl.2017.04.002
[28] Loi, C. C., Eyres, G. T., & Birch, E. J. (2019). Effect of mono- and diglycerides on physical properties and stability of a protein-stabilised oil-in-water emulsion. Journal of Food Engineering, 240, 56–64. doi:10.1016/j.jfoodeng.2018.07.016
[29] Hong, I. K., Kim, S. I., & Lee, S. B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry, 67, 123–131. doi:10.1016/j.jiec.2018.06.022
[30] Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117. doi:10.1016/j.cis.2020.102117
[31] Borrin, T. R., Georges, E. L., Moraes, I. C. F., & Pinho, S. C. (2016). Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico-chemical stability. Journal of Food Engineering, 169(1), 1–9. doi:10.1016/j.jfoodeng.2015.08.012
[32] Li, Y., & Xiang, D. (2019). Stability of oil-in-water emulsions performed by ultrasound power or high-pressure homogenization. PLOS ONE, 14(3), e0213189. doi:10.1371/journal.pone.0213189
[33] Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48(1), 44–49. doi:10.1016/j.ijbiomac.2010.09.014
[34] Xiao, J., Wang, W., Wang, K., Liu, Y., Liu, A., Zhang, S., & Zhao, Y. (2016). Impact of melting point of palm oil on mechanical and water barrier properties of gelatin-palm oil emulsion film. Food Hydrocolloids, 60, 243–251. doi:10.1016/j.foodhyd.2016.03.042
[35] Pérez-Mateos, M., Montero, P., & Gómez-Guillén, M. C. (2009). Formulation and stability of biodegradable films made from cod gelatin and sunflower oil blends. Food Hydrocolloids, 23(1), 53–61. doi:10.1016/j.foodhyd.2007.11.011
[36] Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishehkar, H. (2017). Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT - Food Science and Technology, 76, 33–39. doi:10.1016/j.lwt.2016.10.028
[37] Nilsuwan, K., Benjakul, S., & Prodpran, T. (2016). Influence of palm oil and glycerol on properties of fish skin gelatin-based films. Journal of Food Science and Technology, 53(6), 2715–2724. doi:10.1007/s13197-016-2243-7
[38] Valencia-Sullca, C., Vargas, M., Atarés, L., & Chiralt, A. (2018). Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids, 75, 107–115. doi:10.1016/j.foodhyd.2017.09.008
[39] Sani, I. K., Pirsa, S., & Tağı, Ş. (2019). Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polymer Testing, 79, 106004. doi:10.1016/j.polymertesting.2019.106004
[40] Akhter, R., Masoodi, F. A., Wani, T. A., & Rather, S. A. (2019). Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. International Journal of Biological Macromolecules, 137, 1245–1255. doi:10.1016/j.ijbiomac.2019.06.214
[41] Ebrahimzadeh, S., Bari, M. R., Hamishehkar, H., Kafil, H. S., & Lim, L.-T. (2021). Essential oils-loaded electrospun chitosan-poly(vinyl alcohol) nonwovens laminated on chitosan film as bilayer bioactive edible films. LWT, 144, 111217. doi:10.1016/j.lwt.2021.111217
[42] Galus, S., & Kadzińska, J. (2016). Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil. Food Technology and Biotechnology, 54(1). doi:10.17113/ftb.54.01.16.3889