بررسی فعالیت اکسیدانی و بهینه‌سازی تولید آب فعال شده با پلاسمای سرد

نویسندگان
1 استادیار گروه مهندسی بیوسیستم، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران، (a.ranjbar@sanru.ac.ir) - شماره تماس: 09111935264
2 دانشجوی کارشناسی ارشد فناوری‌های پس از برداشت، گروه مهندسی بیوسیستم، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
3 دکترای شیمی مواد غذایی، کارشناس تحقیق و توسعه کاله، آمل، ایران
چکیده
آب فعال شده با پلاسمای سرد به‌عنوان یک جایگزین غیرسمی و دوستدار محیط‌زیست معرفی و کارایی خود در برابر طیف گسترده­ای از عوامل بیماری­زا از جمله باکتری­ها، ویروس­ها و قارچ­ها را نشان داده است. در این پژوهش از آب شهری برای فعالسازی توسط دستگاه مولد پلاسمای سرد با استفاده از یک رآکتور پلاسما شامل الکترودهای مسی و فولادی، ولتاژ kV 20  جریان mA 3 با کمک هوای اتمسفر استفاده شد. برای تولید آب فعال شده، طرح آزمایشات توسط نرم‌افزار دیزاین اکسپرت ورژن 12 در قالب طرح باکس- بنکن با فاکتورهای زمان تیمار با پلاسما (0، 15 و 30 دقیقه)، سرعت تزریق هوا (m/s 5/0، 1 و 5/1) و دمای نگهداری آب فعال شده با پلاسمای سرد ( 20، 4 و 20-) اجرا شد. قبل از استفاده، ویژگیهای آب از جمله میزان پراکسید هیدروژن، اکسیژن، سختی کل، ازن، نیترات، نیتریت و کلر اندازهگیری شد. این ویژگی‌ها طی مدت روزهای 1، 2، 3 و 6 نیز مورد آزمون قرار گرفتند. نتایج نشان دادند تمام فاکتورهای موردمطالعه بر نتایج مورد بررسی اثر معنادار داشتند. اثر متقابل این فاکتورهای نیز در برخی موارد اثر معنادار کاهشی و یا افزایش بر نتایج داشتند. به‌طورکلی مشخص شد دمای نگهداری محیط، زمان تیمار بیشتر با پلاسمای سرد، و سرعت هوای m/s 1 می‌تواند آب فعال با ویژگی‌های اکسیدانی بهتری را تهیه کند. شرایط بهینه تولید آب فعال شده نیز عبارت بود از زمان تیمار 5/23 دقیقه با پلاسمای سرد، سرعت هوای m/s 97/0 و دمای نگهداری 20.

 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Studying the Oxidant Activity and Optimization of Cold Plasma- Activated Water

نویسندگان English

Azadeh Ranjbar Nedamani 1
Ali Taghavi 2
Elham Ranjbar Nedamani 3
1 Assistant Professor, Biosystem Engineering Department, Sari Agricultural Science and Natural Resources University, Sari, Iran, (a.ranjbar@sanru.ac.ir)- Tel: +989111935264
2 M.Sc. Student of Post-Harvest Technology, Biosystem Engineering Department, Sari Agricultural Science and Natural Resources University, Sari, Iran
3 Ph.D. in Food Chemistry, Research and Development, Kalleh, Amol, Iran
چکیده English

Activated water with cold-plasma has emerged as a non-toxic and environmentally friendly alternative, demonstrating its efficiency against a wide range of pathogens, including bacteria, viruses, and fungi. In this study, tap water was activated using cold plasma generator, employing a plasma reactor consisting of copper and steel electrons, with a voltage of 20 kV and a current of 3 mA at atmospheric air. To produce and optimization of activated water, experimental designs were conducted using Design Expert software version 12, following a Box-Behnken design. The factors were treatment time (0, 15, and 30 min), air injection velocity (0.5, 1, and 1.5 m/s), and storeage temperature (20, 4, and -20 ). The characteristics of water, including hydrogen peroxide concentration, oxygen levels, total hardness, ozone, nitrate, nitrite, and chlorine, were measured at the days of 0, 1, 2, 3, and 6 to investigate the activation during storage period. The results indicated that all studied factors had a significant effect on the outcomes examined. The interaction effects of these factors also exhibited significant decreasing impact on the results in certain cases. Finally, it was determined that the storage temperature of the environment, prolonged treatment time with cold-plasma, and an air velocity of 1 m/s could yield activated water with superior oxidative properties. The optimized condition for producing activated water was identified as a treatment time of 23.5 min, 0.97 m/s air velocity, and storage temperature of 20.



 

کلیدواژه‌ها English

Activated water
cold plasma
design expert
Hydrogen peroxide
Al-Sharify, Z. T., Al-Sharify, T. A., & al-Azawi, A. M. (2020). Investigative study on the interaction and applications of plasma activated water (PAW). IOP Conference Series: Materials Science and Engineering,
Ali, M., Cheng, J.-H., & Sun, D.-W. (2021). Effect of plasma activated water and buffer solution on fungicide degradation from tomato (Solanum lycopersicum) fruit. Food Chemistry, 350, 129195. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129195
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4‐hydroxy‐2‐nonenal. Oxidative medicine and cellular longevity, 2014(1), 360438.
Guo, D., Liu, H., Zhou, L., Xie, J., & He, C. (2021). Plasma‐activated water production and its application in agriculture. Journal of the Science of Food and Agriculture, 101(12), 4891-4899.
Guo, J., Huang, K., Wang, X., Lyu, C., Yang, N., Li, Y., & Wang, J. (2017). Inactivation of Yeast on Grapes by Plasma-Activated Water and Its Effects on Quality Attributes. Journal of Food Protection, 80(2), 225-230. https://doi.org/https://doi.org/10.4315/0362-028X.JFP-16-116
Hadinoto, K., Astorga, J. B., Masood, H., Zhou, R., Alam, D., Cullen, P. J., Prescott, S., & Trujillo, F. J. (2021). Efficacy optimization of plasma-activated water for food sanitization through two reactor design configurations. Innovative Food Science & Emerging Technologies, 74, 102867. https://doi.org/https://doi.org/10.1016/j.ifset.2021.102867
Han, Q.-Y., Wen, X., Gao, J.-Y., Zhong, C.-S., & Ni, Y.-Y. (2023). Application of plasma-activated water in the food industry: A review of recent research developments. Food Chemistry, 405, 134797. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.134797
Herianto, S., Hou, C. Y., Lin, C. M., & Chen, H. L. (2021). Nonthermal plasma‐activated water: A comprehensive review of this new tool for enhanced food safety and quality. Comprehensive Reviews in Food Science and Food Safety, 20(1), 583-626.
Hoeben, W., Van Ooij, P., Schram, D., Huiskamp, T., Pemen, A., & Lukeš, P. (2019). On the possibilities of straightforward characterization of plasma activated water. Plasma Chemistry and Plasma Processing, 39, 597-626.
Hou, C.-Y., Lai, Y.-C., Hsiao, C.-P., Chen, S.-Y., Liu, C.-T., Wu, J.-S., & Lin, C.-M. (2021). Antibacterial activity and the physicochemical characteristics of plasma activated water on tomato surfaces. LWT, 149, 111879. https://doi.org/https://doi.org/10.1016/j.lwt.2021.111879
Julák, J., Hujacová, A., Scholtz, V., Khun, J., & Holada, K. (2018). Contribution to the chemistry of plasma-activated water. Plasma Physics Reports, 44, 125-136.
Kamgang‐Youbi, G., Herry, J. M., Meylheuc, T., Brisset, J. L., Bellon‐Fontaine, M. N., Doubla, A., & Naitali, M. (2009). Microbial inactivation using plasma‐activated water obtained by gliding electric discharges. Letters in applied microbiology, 48(1), 13-18.
Khlyustova, A., Labay, C., Machala, Z., Ginebra, M.-P., & Canal, C. (2019). Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Frontiers of Chemical Science and Engineering, 13, 238-252.
Laurita, R., Barbieri, D., Gherardi, M., Colombo, V., & Lukes, P. (2015). Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clinical Plasma Medicine, 3(2), 53-61.
Leuratti, C., Singh, R., Lagneau, C., Farmer, P. B., Plastaras, J. P., Marnett, L. J., & Shuker, D. (1998). Determination of malondialdehyde-induced DNA damage in human tissues using an immunoslot blot assay. Carcinogenesis, 19(11), 1919-1924.
Liu, C., Chen, C., Jiang, A., Sun, X., Guan, Q., & Hu, W. (2020). Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple. Innovative Food Science & Emerging Technologies, 59, 102256. https://doi.org/https://doi.org/10.1016/j.ifset.2019.102256
Liu, K., Yang, Z., & Liu, S. (2020). Study of the characteristics of DC multineedle-to-water plasma-activated water and Its germination inhibition efficiency: The effect of discharge mode and gas flow. IEEE Transactions on Plasma Science, 48(4), 969-979.
Ma, M., Zhang, Y., Lv, Y., & Sun, F. (2020). The key reactive species in the bactericidal process of plasma activated water. Journal of Physics D: Applied Physics, 53(18), 185207.
Milhan, N. V. M., Chiappim, W., Sampaio, A. d. G., Vegian, M. R. d. C., Pessoa, R. S., & Koga-Ito, C. Y. (2022). Applications of plasma-activated water in dentistry: A review. International Journal of Molecular Sciences, 23(8), 4131.
Niquet, R., Boehm, D., Schnabel, U., Cullen, P., Bourke, P., & Ehlbeck, J. (2018). Characterising the impact of post‐treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and DBD sources. Plasma Processes and Polymers, 15(3), 1700127.
Qi, Z., Tian, E., Song, Y., Sosnin, E. A., Skakun, V. S., Li, T., Xia, Y., Zhao, Y., Lin, X., & Liu, D. (2018). Inactivation of Shewanella putrefaciens by plasma activated water. Plasma Chemistry and Plasma Processing, 38, 1035-1050.
Rathore, V., Patel, D., Butani, S., & Nema, S. K. (2021). Investigation of physicochemical properties of plasma activated water and its bactericidal efficacy. Plasma Chemistry and Plasma Processing, 41, 871-902.
Traylor, M. J., Pavlovich, M. J., Karim, S., Hait, P., Sakiyama, Y., Clark, D. S., & Graves, D. B. (2011). Long-term antibacterial efficacy of air plasma-activated water. Journal of Physics D: Applied Physics, 44(47), 472001.
Wende, K., von Woedtke, T., Weltmann, K.-D., & Bekeschus, S. (2019). Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biological Chemistry, 400(1), 19-38.
Wong, K. S., Chew, N. S., Low, M., & Tan, M. K. (2023). Plasma-activated water: Physicochemical properties, generation techniques, and applications. Processes, 11(7), 2213.
Xiang, Q., Fan, L., Li, Y., Dong, S., Li, K., & Bai, Y. (2022). A review on recent advances in plasma-activated water for food safety: Current applications and future trends. Critical Reviews in Food Science and Nutrition, 62(8), 2250-2268.
Xiao, A., Liu, D., & Li, Y. (2023). Plasma-activated tap water production and its application in atomization disinfection. Applied Sciences, 13(5), 3015.
Zhang, Q., Liang, Y., Feng, H., Ma, R., Tian, Y., Zhang, J., & Fang, J. (2013). A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Applied physics letters, 102(20).
Zhao, Y. M., Patange, A., Sun, D. W., & Tiwari, B. (2020). Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3951-3979.
Zheng, J. (2017). Inactivation of Staphylococcus aureus in water by pulsed spark discharge. Scientific reports, 7(1), 10311.
Zhou, R., Zhou, R., Prasad, K., Fang, Z., Speight, R., Bazaka, K., & Ostrikov, K. K. (2018). Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite. Green Chemistry, 20(23), 5276-5284.
Zhou, R., Zhou, R., Wang, P., Xian, Y., Mai-Prochnow, A., Lu, X., Cullen, P., Ostrikov, K. K., & Bazaka, K. (2020). Plasma-activated water: Generation, origin of reactive species and biological applications. Journal of Physics D: Applied Physics, 53(30), 303001.