ارزیابی خصوصیات تکنیکی-عملکردی، ضدقارچی و حسّی نان نیمه حجیم حاوی خمیرترش آرد شلتوک برنج با استارتر غالب لاکتوباسیلوس اسیدوفیلوس در طول مدت ماندگاری

نویسندگان
عضو هیات علمی دانشگاه گیلان، رشت، ایران
چکیده
آگاهی و تقاضای روزافزون مصرف­کنندگان برای تولید محصولات غذایی سالم فاقد افزودنی­های شیمیایی در توسعه غذاهای کاربردی و استراتژیک اثرات چشمگیری داشته است. در این مطالعه بعد از شناسایی کنسرسیوم غالب باکتریایی خمیرترش آرد شلتوک برنج (L. acidophilus FA690130) و تعیین نقطه بهینه کنترل تخمیر با عملکرد بالقوه خمیرترش متناسب با مدل­های برازش شده با ضریب صحت و اطمینان بیش از 78 درصد، به ارزیابی خصوصیات تکنیکی-عملکردی، ضدقارچی و حسّی نان نیمه حجیم خمیرترشی در طول مدت ماندگاری 7 روز پرداخته شد. آنالیز واریانس و مقایسه میانگین تمام آزمون­های کیفی و تکنیکی-عملکردی نمونه­های نان محتوی خمیرترش شلتوک برنج در طول مدت ماندگاری در مقایسه با نمونه شاهد در سطح 5 درصد اختلاف معنی­داری را نشان دادند (P<0.05). کاهش فعالیـت آبی و اتصالات عرضی در نمونه نان خمیرترشی در مقایسه با نمونه شاهد در طول مدت ماندگاری سبب کاهش افت رطوبت (بترتیب 4 و 10 درصد) و رهایش آهسته­تر محتوی رطوبت مغز و پوسته در مقایسه با آن شد. حجم مخصوص و تخلخل در طول مدت ماندگاری روند نزولی داشت، همچنین شاخص­های رنگی، برایند رنگ کل، شاخص قهوه­ای شدن، زردی و سفیدی و خصوصیات ضد قارچی در مقایسه با نمونه شاهد اختلاف مشهودی داشت. خصوصیات بافتی بعنوان نرخی از بیاتی در طول مدت ماندگاری در مقایسه با نمونه کنترل روند مطلوب­تری را نشان داد. در نهایت تاثیر هدایت تخمیر خمیرترش در طول مدت ماندگاری سبب بهبود  ژلاتینه شدن و واگشتگی، خصوصیات حسّی و ضد قارچی نمونه نان گردید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of techno-functional, antifungal and sensory properties of semi-bulk bread made with rice husk flour sourdough with Lactobacillus acidophilus dominant starter during shelf-life.

نویسندگان English

Abbas Abedfar
Alireza Mehregan Nikoo
Department of Food Science & Technology, University of Guilan, Rasht, Iran
چکیده English

The development of functional and strategic foods has been greatly influenced by increasing consumer awareness and demand for healthy foods without chemical additives. In this research, after identifying the dominant bacterial consortium of rice paddy flour sourdough (L. acidophilus FA690130) and determining the optimal fermentation control point with the potential performance of sourdough according to the fitted models with an accuracy and reliability coefficient of more than 78%, to evaluate the techno-functional characteristics, anti-fungal and sensory properties of sourdough semi-bulk bread during the shelf life of 7 days were studied. The decrease in water activity and cross-linking in the sourdough bread sample compared to the control sample during shelf-life resulted in a decrease in moisture loss (4% and 10% respectively) and a slower release of moisture content in the core and crust compared to the control. The specific volume and porosity showed a decreasing trend over the shelf life and the TCD color indices, BI index, YI and WI and anti-fungal properties were significantly different from the control sample. Compared to the control sample, the texture characteristics as the staling rate during shelf life showed a more favorable trend. Finally, the effect of controlling sourdough fermentation during shelf-life improved the gelatinization and spreadability, sensory and anti-fungal properties of the bread sample.

کلیدواژه‌ها English

Rice husk sourdough
L. acidophilus
shelf life
technical and functional properties
Antifungal properties
[1] Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021). A review of active packaging in bakery products: Applications and future trends. Trends in Food Science & Technology, 114, 459–471.
[2] Abedfar, A., Hosseininezhad, M., Sadeghi, A., Raeisi, M., & Feizy, J. (2018). Investigation on “spontaneous fermentation” and the productivity of microbial exopolysaccharides by Lactobacillus plantarum and Pediococcus pentosaceus isolated from wheat bran sourdough. LWT, 96, 686-693.
[3] Amr, A. S., & Alkhamaiseh, A. M. (2022). Sourdough use in bread production. Jordan Journal of Agricultural Sciences, 18(2), 81-98.
[4] Zharkova, I. M., Roslyakov, Y. F., & Ivanchikov, D. S. (2023). Sourdoughs of Spontaneous (Natural) Fermentation in Modern Bakery Production. J. Food Process, 53(3), 525-544.
[5] Islam, M. A., & Islam, S. (2024). Sourdough bread quality: Facts and Factors. Foods, 13(13), 2132.
[6] Poutanen, K., Flander, L., & Katina, K. (2009). Sourdough and cereal fermentation in a nutritional perspective. Food microbiology, 26(7), 693-699.
[7] Fernández-Peláez, J., Paesani, C., & Gómez, M. (2020). Sourdough technology as a tool for the development of healthier grain-based products: An update. Agronomy, 10(12), 1962.
[8] Espinales, C., Cuesta, A., Tapia, J., Palacios-Ponce, S., Peñas, E., Martínez-Villaluenga, C. & Cáceres, P. J. (2022). The effect of stabilized rice bran addition on physicochemical, sensory, and techno-functional properties of bread. Foods, 11(21), 3328.
[9] Dong, Y., & Karboune, S. (2021). A review of bread qualities and current strategies for bread bioprotection: Flavor, sensory, rheological, and textural attributes. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1937-1981.
[10] Abedfar, A. (2024). Investigating the antimicrobial activity (anti-fungal and antibacterial) and the effect of sourdough of two dominant strains of lactic acid bacteria in rice husk flour on the amount of phytic acid in semi bulk bread. Journal of food industry engineering research. (Accept, Article in Press).
[11] Abedfar, A., Hosseinnezhad, M., Sadeghi, A., & Abbaszadeh, F. (2019). Optimization of controlled fermentation in rice bran sourdough and evaluation of quality characteristics of pan bread by using Response Surface Method. Journal of New Food Technologies, 6(3), 379–397.
[12] Sadeghi, A., Ebrahimi, M., Mortazavi, S. A., & Abedfar, A. (2019). Application of the selected antifungal LAB isolate as a protective starter culture in pan whole-wheat sourdough bread. Food Control, 95, 298-307.
[13] Manini, F., Brasca, M., Plumed‐Ferrer, C., Morandi, S., Erba, D., & Casiraghi, M. C. (2014). Study of the chemical changes and evolution of microbiota during sourdoughlike fermentation of wheat bran. Cereal chemistry, 91(4), 342-349.
[14] Ilowefah, M., Chinma, C., Bakar, J., Ghazali, H. M., Muhammad, K., & Makeri, M. (2014). Fermented brown rice flour as functional food ingredient. Foods, 3(1), 149-159.
[15] Katina, K., Juvonen, R., Laitila, A., Flander, L., Nordlund, E., Kariluoto, S. & Poutanen, K. (2012). Fermented wheat bran as a functional ingredient in baking. Cereal chemistry, 89(2), 126-134.
[16] AACC (2010). Moisture 44-19, protein 46-10, wet gluten 38-12, and ash 08-01 methods. In. St. Paul, MN, USA: American association of cereal chemists 357 (AACC) international.
[17] Mauch, A., Dal Bello, F., Coffey, A., & Arendt, E. K. (2010). The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. International Journal of Food Microbiology, 141(1-2), 116-121.
[18] Abedfar, A., Hosseininezhad, M., & Rafe, A. (2020). Effect of microbial exopolysaccharide on wheat bran sourdough: Rheological, thermal and microstructural characteristics. International journal of biological macromolecules, 154, 371-379.
[19] Meignen, B., Onno, B., Gélinas, P., Infantes, M., Guilois, S., & Cahagnier, B. (2001). Optimization of sourdough fermentation with Lactobacillus brevis and baker's yeast. Food microbiology, 18(3), 239-245.
[20] Mazidi, S., Eskandari, M. H., Niakosari, M., Mostowfizadeh-Ghalamfarsa, R., & Fazaeli, M. (2024). Physicochemical Properties and Microbial Storage Stability of Tiri Traditional Iranian Flat Bread. International Journal of Nutrition Sciences.
[21] Terrazas‐Avila, P., Palma‐Rodríguez, H. M., Navarro‐Cortez, R. O., Hernández‐Uribe, J. P., Piloni‐Martini, J., & Vargas‐Torres, A. (2024). The effects of fermentation time on sourdough bread: An analysis of texture profile, starch digestion rate, and protein hydrolysis rate. Journal of Texture Studies, 55(2), 12831.
[22] Xu, X., Yang, Q., Luo, Z., & Xiao, Z. (2022). Effects of sourdough fermentation and an innovative compound improver on the baking performance, nutritional quality, and antistaling property of whole wheat bread. ACS Food Science & Technology, 2(5), 825-835.
[23] Verdonck, C., De Bondt, Y., Pradal, I., Bautil, A., Langenaeken, N. A., Brijs, K., & Courtin, C. M. (2023). Impact of process parameters on the specific volume of wholemeal wheat bread made using sourdough-and baker's yeast-based leavening strategies. International Journal of Food Microbiology, 396, 110193.
[24] Srisuk, N., & Jirasatid, S. (2023). Development of Instant Pumpkin-Fingerroot Drink Powder and Its Shelf Life Modeling. Life Sciences and Environment Journal, 24(1), 161-182.
[25] Abedfar, A., & Sadeghi, A. (2019). Response surface methodology for investigating the effects of sourdough fermentation conditions on Iranian cup bread properties. Heliyon, 5(10).
[26] Yi, C., Xie, L., Cao, Z., Quan, K., Zhu, H., & Yuan, J. (2022). Effects of rice bran fermented with Lactobacillus plantarum on palatability, volatile profiles, and antioxidant activity of brown rice noodles. International Journal of Food Science & Technology, 57(8), 5048-5056.
[27] Manini, F., Casiraghi, M. C., Poutanen, K., Brasca, M., Erba, D., & Plumed-Ferrer, C. (2016). Characterization of lactic acid bacteria isolated from wheat bran sourdough. LWT-food Science and Technology, 66, 275-283.
[28] Alkay, Z., Kılmanoğlu, H., & Durak, M. Z. (2020). Prevention of sourdough bread mould spoliage by antifungal lactic acid bacteria fermentation. Avrupa Bilim ve Teknoloji Dergisi, (18), 379-388.
[29] Zhang, L., Lucas, T., Doursat, C., Flick, D., & Wagner, M. (2007). Effects of crust constraints on bread expansion and CO2 release. Journal of Food Engineering, 80(4), 1302-1311.
[30] Naghipour, F., Sahraiyan, B., Soleimani, M., & Sedaghat, N. (2015). Effect of Temperature, Relative Humidity and Packaging Film on Maintaining the Quality and Increasing the Shelf-life of Sorghum Gluten-free Bread. Iranian. Journal of Nutrition Sciences & Food Technology, 10(1), 61-70.
[31] Maleki, G., Milani, J. M., & Amiri, Z. (2012). Effect of different hydrocolloids on staling of barbari bread. Adv Food Sci, 34, 36-42.
[32] Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food chemistry, 104(2), 686-692.
[33] Fitzgerald, C., Gallagher, E., Doran, L., Auty, M., Prieto, J., & Hayes, M. (2014). Increasing the health benefits of bread: Assessment of the physical and sensory qualities of bread formulated using a renin inhibitory Palmaria palmata protein hydrolysate. LWT-Food Science and Technology, 56(2), 398-405.
[34] Gambuś, H., Gibiński, M., Pastuszka, D., Mickowska, B., Ziobro, R., & Witkowicz, R. (2011). The application of residual oats flour in bread production in order to improve its quality and biological value of protein. Acta Scientiarum Polonorum Technologia Alimentaria, 10(3), 317-325.
[35] Galle, S., Schwab, C., Dal Bello, F., Coffey, A., Gänzle, M. G., & Arendt, E. K. (2012). Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. International journal of food microbiology, 155(3), 105-112.
[36] Huang, H., Lin, P., & Zhou, W. (2007). Moisture transport and diffusive instability during bread baking. SIAM Journal on Applied Mathematics, 68(1), 222-238.
[37] de Conto, L. C., Oliveira, R. S. P., Martin, L. G. P., Chang, Y. K., & Steel, C. J. (2012). Effects of the addition of microencapsulated omega-3 and rosemary extract on the technological and sensory quality of white pan bread. LWT-Food Science and Technology, 45(1), 103-109.
[38] Scanlon, M. G., & Zghal, M. C. (2001). Bread properties and crumb structure. Food research international, 34(10), 841-864.
[39] Katina, K., Heiniö, R. L., Autio, K., & Poutanen, K. (2006). Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT-Food Science and Technology, 39(10), 1189-1202.
[40] Gänzle, M. G., Loponen, J., & Gobbetti, M. (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in food science & technology, 19(10), 513-521.