آنالیز انتقال حرارت و جرم طی فرآیند سرخ کردن هوای داغ و سرخ کردن عمیق میگو

نویسندگان
1 گروه علوم و مهندسی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 دانشیار گروه مهندسی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 دانشیار گروه شیمی مواد غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
4 استادیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی و دامپروری، مجتمع آموزش عالی تربت جام، تربت جام، استان خراسان رضوی، ایران
5 استادیار گروه شیلات، مرکز تحقیقات شیلات استان گلستان، گرگان، ایران
چکیده
در این پژوهش پدیده‌های انتقال طی سرخ‌کردن با هوای داغ و سرخ کردن عمیق بررسی شد. عملیات سرخ‌کردن با هوای داغ (HAF) و سرخ‌کردن عمیق (DFF) در دمای °C 160 به مدت 15 دقیقه برای قطعات استوانه‌ای میگو انجام گرفت. تغییرات دمای مرکزی محصول طی سرخ­کردن با استفاده از ترموکوپل نوع T متصل به دستگاه ثبت داده در رایانه ثبت گردید. محتوی رطوبت و روغن نمونه­ها در هر زمان از فرایند اندازه­گیری شد. پارامترهای انتقال حرارت و جرم با استفاده از نمودارهای نسبت­های دمایی و غلظت بدون بعد و معادلات تجربی برآورد شد. نتایج نشان داد که پارامترهای انتقال جرم و حرات طی سرخ‌کردن با هوای داغ کمتر از روش سرخ‌کردن عمیق هستند. در سرخ کردن عمیق عدد بایوت و ضریب نفوذ موثر بالاتر از روش سرخ کردن هوای داغ بود. ثابت سینتیکی کاهش رطوبت در محصول در روش سرخ کردن عمیق بیشتر بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analysis of heat and mass transfer during hot air frying and deep frying of shrimp

نویسندگان English

Bahareh Maroufpour 1
Aman Mohammad Ziaiifar 2
Mohammad Ghorbani 3
Hassan Sabbaghi 4
Saeed Yalghi 5
1 Department of Food Industry Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associate Professor, Department of Food Industry Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Associate Professor, Department of Food Chemistry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 . Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture and Animal Science, University of Torbat-e Jam, Torbat-e Jam, Razavi Khorasan Province, Iran.
5 Assistant Professor of Fisheries Department, Golestan Province Fisheries Research Center, Gorgan, Iran
چکیده English

In this research, transfer phenomena during hot air frying and deep frying were investigated. Hot air frying (HAF) and deep frying (DFF) were carried out at 160 °C for 15 minutes for shrimp cylindrical pieces. Temperature variations at the product's core were recorded using a T-type thermocouple equipped Data Logger and PicoLog software on a computer. Moisture content and oil of the product were determined. Heat and mass transfer parameters estimate by using the logarithmic plot of dimensionless temperature against time and empirical equations. Results showed that Mass and heat transfer parameters during hot air frying were lower than deep frying method. In deep frying, the Biot number and the effective diffusion coefficient were higher than the hot air frying method. The kinetic constant of moisture reduction in the product was higher in the deep frying method.

کلیدواژه‌ها English

Shrimp
Hot air frying
mass transfer
Heat Transfer
[1] Ajifolokun, O. M., Basson, A. K., Osunsanmi, F. O., & Zharare, G. E. (2018). Effects of drying methods on quality attributes of shrimps. Journal of Food Processing and Technology, 10(772): 2.
[2] AlFaris, N. A., Alshammari, G. M., AlTamimi, J. Z., AlMousa, L. A., Alagal, R. I., AlKehayez, N. M., ... & Yahya, M. A. (2022). Evaluating the effects of different processing methods on the nutritional composition of shrimp and the antioxidant activity of shrimp powder. Saudi Journal of Biological Sciences, 29(1): 640-649.
[3] Rajesh, M., & Noorjahan, A. (2021). Comparative studies on antioxidant properties of wild and cultured shrimps. Journal of Survey in Fisheries Sciences, 199-208.
[4] Nguyen, M. P., Ngo, T. T., & Le, T. D. (2019). Experimental and numerical investigation of transport phenomena and kinetics for convective shrimp drying. Case Studies in Thermal Engineering, 14: 100465.
[5] Rostini, I., & Pratama, R. I. (2018). Effect of steaming on physical and chemical characteristics White Shrimp (Litopenaeus vannamei) from Indramayu Waters. In IOP Conference Series: Earth and Environmental Science (Vol. 176, No. 1, p. 012046). IOP Publishing.
[6] Musaiger, A. O., & D Souza, R. (2008). The effects of different methods of cooking on proximate, mineral and heavy metal composition of fish and shrimps consumed in the Arabian Gulf. Archivos latinoamericanos de nutrición, 58(1): 103-109.
[7] Erdoǧdu, F., Balaban, M. O., & Otwell, W. S. (2003). Construction of shrimp cooking charts using previously developed mathematical models for heat transfer and yield loss predictions. Journal of food engineering, 60(1): 107-110.
[8] Dueik, V., Robert, P., & Bouchon, P. (2010). Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food chemistry, 119(3): 1143-1149.
[9] Ngadi, M. O., Wang, Y., Adedeji, A. A., & Raghavan, G. S. V. (2009). Effect of microwave pretreatment on mass transfer during deep-fat frying of chicken nugget. LWT-Food Science and Technology, 42(1): 438-440.
[10] Moyano, P. C., & Pedreschi, F. (2006). Kinetics of oil uptake during frying of potato slices: Effect of pre-treatments. LWT-Food Science and Technology, 39(3): 285-291.
[11] Debnath, S., Bhat, K. K., & Rastogi, N. K. (2003). Effect of pre-drying on kinetics of moisture loss and oil uptake during deep fat frying of chickpea flour-based snack food. LWT-Food Science and Technology, 36(1): 91-98.
[12] Zaghi, A. N., Barbalho, S. M., Guiguer, E. L., & Otoboni, A. M. (2019). Frying process: From conventional to air frying technology. Food Reviews International, 35(8): 763-777.
[13] Andrés, A., Arguelles, Á., Castelló, M. L., & Heredia, A. (2013). Mass transfer and volume changes in French fries during air frying. Food and Bioprocess Technology, 6: 1917-1924.
[14] Teruel, M. D. R., Gordon, M., Linares, M. B., Garrido, M. D., Ahromrit, A., & Niranjan, K. (2015). A comparative study of the characteristics of french fries produced by deep fat frying and air frying. Journal of Food Science, 80(2): E349-E358.
[15] Santos, C. S., Cunha, S. C., & Casal, S. (2017). Deep or air frying? A comparative study with different vegetable oils. European Journal of Lipid Science and Technology, 119(6): 1600375.
[16] Heredia, A., Castelló, M. L., Argüelles, A., & Andrés, A. (2014). Evolution of mechanical and optical properties of French fries obtained by hot air-frying. LWT-Food Science and Technology, 57(2): 755-760.
[17] Giovanelli, G., Torri, L., Sinelli, N., & Buratti, S. (2017). Comparative study of physico-chemical and sensory characteristics of French fries prepared from frozen potatoes using different cooking systems. European Food Research and Technology, 243(9): 1619-1631.
[18] Ferreira, F. S., Sampaio, G. R., Keller, L. M., Sawaya, A. C., Chávez, D. W., Torres, E. A., & Saldanha, T. (2017). Impact of air frying on cholesterol and fatty acids oxidation in sardines: Protective effects of aromatic herbs. Journal of food science, 82(12): 2823-2831.
[19] Tajner-Czopek, A., Figiel, A., & Carbonell-Barrachina, A. A. (2008). Effects of potato strip size and pre-drying method on French fries quality. European Food Research and Technology, 227: 757-766.
[20] Yıldız, A., Palazoğlu, T. K., & Erdoğdu, F. (2007). Determination of heat and mass transfer parameters during frying of potato slices. Journal of food engineering, 79(1): 11-17.
[21] Krokida, M. K., Oreopoulou, V., & Maroulis, Z. B. (2000b). Water Loss and Oil Uptake as a Function of Frying Time. Journal of Food Engineering, 44: 39-46.
[22] Krokida, M. K., Oreopoulou, V., Maroulis, Z. B., & Marinos-Kouris, D. (2001a). Effects of osmotic dehydration pretreatment on quality of French fries. Journal of Food Engineering, 49: 339-345.
[23] Hamid, H. H., Mitchell, M., Jahangiri, A., & Thiel, D. V. (2018). Experimental validation of new empirical models of the thermal properties of food products for safe shipping. Heat and Mass Transfer, 54: 1247-1256.
[24] USDA. (2005). USDA national nutrient database for standard reference. http://www.ars.usda.gov.
[25] Durán, M., Pedreschi, F., Moyano, P., & Troncoso, E. (2007). Oil partition in pre-treated potato slices during frying and cooling. Journal of food Engineering, 81(1): 257-265.
[26] Ziaiifar, A. M., Courtois, F., & Trystram, G. (2010). Porosity development and its effect on oil uptake during frying process. Journal of Food Process Engineering, 33(2): 191-212.
[27] Pan, G., Ji, H., Liu, S., & He, X. (2015). Vacuum frying of breaded shrimps. LWT-Food Science and Technology, 62(1): 734-739.
[28] Yang, D., Wu, G., Lu, Y., Li, P., Qi, X., Zhang, H., ... & Jin, Q. (2021). Comparative analysis of the effects of novel electric field frying and conventional frying on the quality of frying oil and oil absorption of fried shrimps. Food Control, 128: 108195.
[29] Costa, R. M., Oliveira, F. A., Delaney, O., & Gekas, V. (1999). Analysis of the heat transfer coefficient during potato frying. Journal of Food Engineering, 39(3): 293-299.
[30] Farkas, B. E., & Hubbard, L. J. (2000). Analysis of convective heat transfer during immersion frying. Drying Technology, 18(6): 1269-1285.
[31] Sabbaghi, H., Ziaiifar, A. M., Sadeghi Mahoonak, A., Kashani-Nejad, M., & Mirzaee, H. (2015). Estimation of convective heat transfer coefficient as function of the water loss rate during frying process. Iranian Food Science and Technology Research Journal, 11(4): 473-484.
[32] Sabbaghi, H., Ziaiifar, A. M., & Kashani-Nejad, M. (2017). Analysis of heat and mass transfer during frying process of potato strips. Iranian Food Science and Technology Research Journal, 13(2): 379-392.
[33] Mohebbi, M., Akbarzadeh-T, M. R., Shahidi, F., Moussavi, M., & Ghoddusi, H. B. (2009). Computer vision systems (CVS) for moisture content estimation in dehydrated shrimp. Computers and electronics in agriculture, 69(2): 128-134.
[34] Romani, S., Bacchiocca, M., Rocculi, P., & Dalla Rosa, M. (2008). Effect of frying time on acrylamide content and quality aspects of French fries. European Food Research and Technology, 226: 555-560.
[35] Farkas, B. E., Singh, R. P., & Rumsey, T. R. (1996). Modeling heat and mass transfer in immersion frying. II, model solution and verification. Journal of Food Engineering, 29(2): 227-248.
[36] Sahin, S. E. R. P. I. L., Sastry, S. K., & Bayindirli, L. (1999). Heat transfer during frying of potato slices. LWT-food science and technology, 32(1): 19-24.
[37] Budžaki, S., & Šeruga, B. (2005). Determination of convective heat transfer coefficient during frying of potato dough. Journal of Food Engineering, 66(3): 307-314.