ارزیابی خواص عملکردی و آنتی اکسیدانی پپتیدهای حاصل از هیدرولیز آنزیمی جلبک اسپیرولینا

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2 دانشیار، گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
3 استاد، گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
4 دانشیار، گروه علوم و صنایع غذایی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
5 استادیار، بخش تحقیقات فرآوری تولیدات دامی، موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
چکیده
هیدرولیز آنزیمی پروتئین جلبک اسپیرولینا، منجر به افزایش ارزش پروتئینی آن و تولید پپتیدهای بیولوژیکی و عملکردی می‌شود که قابلیت هضم و جذب بالا و خواص آنتی‌اکسیدانی مناسبی دارند. در این پژوهش، خواص آنتی‌اکسیدانی و عملکردی پپتیدهای زیست فعال حاصل از هیدرولیز آنزیمی جلبک اسپیرولینا بررسی شود. در روند ارزیابی، ابتدا پروتئین‌های جلبک اسپیرولینا با استفاده از آنزیم‌های آلکالاز و فلاورزایم طی زمانهای مختلف 10، 20 و 30 دقیقه هیدرولیز شدند. سپس، درجه هیدرولیز، بازیافت پروتئینی، خواص آنتی‌اکسیدانی پپتیدها به وسیله آزمون‌های مهار کنندگی رادیکال‌های آزاد DPPH (1,1-diphenyl-2-picrylhydrazyl) و FRAP (Ferric Reducing Antioxidant Power) و ویژگی‌های عملکردی پپتیدها نیز شامل حلالیت، ظرفیت و پایداری کف کنندگی و امولسیون مورد.مورد ارزیابی قرار گرفتند. نتایج این ارزیابی‌ها نشان داد که پپتیدهای حاصل از هیدرولیز آنزیمی جلبک اسپیرولینا دارای خواص آنتی‌اکسیدانی بالا بوده و می‌توانند به عنوان مهارکننده‌های رادیکال‌های آزاد عمل کنند. همچنین، ویژگی‌های عملکردی مناسبی نیز در پپتیدها مشاهده شد که نشان از قابلیت آنها در کاربردهای مختلفی مانند صنایع غذایی دارند. همچنین بر اساس نتایج آنزیم آلکالاز توانایی بالاتری در تولید پروتئین هیدرولیزی با درجه هیدرولیزاسیون، محتوای پروتئینی و بازیافت پروتئینی بالاتر، و همچنین خاصیت آنتی‌اکسیدانی و عملکردی بهتری نسبت به آنزیم فلاورزایم دارا بود و زمان هیدرولیز نیز تاثیر مثبتی بر پارامترهای فوق داشت. بنابراین، پژوهش حاضر نشان می‌دهد که پپتیدهای حاصل از هیدرولیز آنزیمی جلبک اسپیرولینا دارای خواص آنتی‌اکسیدانی و عملکردی هستند و می‌توانند به عنوان ترکیبات مفید در محصولات غذایی و سایر صنایع مورد استفاده قرار گیرند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the functional and antioxidant properties of peptides derived from enzymatic hydrolysis of Spirulina algae

نویسندگان English

Andisheh Tavakoli 1
Reza Farahmandfar 2
Ali Motamedzadegan 3
Peiman Ariaii 4
Maryam Asnaashari 5
1 PhD student, Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Associate Professor, Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 Professor, Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4 Associate Professor, Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
5 Department of Animal Processing, Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده English

Enzymatic hydrolysis of Spirulina algae protein, commonly practiced in the food industry, leads to increased protein value and the production of biologically active and functional peptides with high digestibility and desirable antioxidant properties. This study aims to investigate the antioxidant and functional properties of bioactive peptides derived from enzymatic hydrolysis of Spirulina algae. In the evaluation process, Spirulina algae proteins were hydrolyzed using alcalase and flavozyme enzymes for different durations of 10, 20, and 30 minutes. The degree of hydrolysis, protein recovery, antioxidant properties of the peptides assessed through DPPH (1,1-diphenyl-2-picrylhydrazyl) and FRAP (Ferric Reducing Antioxidant Power) assays, as well as the functional characteristics of the peptides including solubility, emulsifying and foam capacity and stability were evaluated. The results of these evaluations demonstrated that peptides derived from enzymatic hydrolysis of Spirulina algae exhibited high antioxidant properties and could act as scavengers of free radicals. Furthermore, these peptides displayed favorable functional properties, indicating their potential applications in various industries, including the food sector. Additionally, based on the results, alcalase enzyme showed higher capability in producing hydrolyzed proteins with higher degree of hydrolysis, protein content, and recovery, as well as better antioxidant and functional properties compared to flavozyme enzyme. The hydrolysis time also had a positive impact on these parameters. Therefore, this study highlights the antioxidant and functional properties of peptides derived from enzymatic hydrolysis of Spirulina algae, suggesting their potential utility as valuable compounds in food products and other industries.

کلیدواژه‌ها English

Hydrolyzed protein
Spirulina Algae
Antioxidant properties
Functional properties
[1] Jia, J., Maa, H., Zhao, W., Wang, Z., Tian, W., & Luo, L. (2010). The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry , 119, 336–342.
[2] Nemati, M., Shahoseini, S. R., & Ariaii, P. (2024). Review of fish protein hydrolysates: Production Methods, Antioxidant and antimicrobial activity and nanoencapsulation. Journal of Food Science and Biotechnology .
[3] Chi, C. F., Hu, F. Y., Wang, B., Li, T., & Ding, G. F. (2015). Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods , 15, 301-313.
[4] Shahosseini, S. R., Javadian, S. R., & Safari, R. (2022). Effects of Molecular Weights -Assisted Enzymatic Hydrolysis on Antioxidant and Anticancer Activities of Liza abu Muscle Protein Hydrolysates. International Journal for Peptide Research & Therapeutics , 28, 72.
[5] Feyzi, S., Varidi, M., Zareb, F., & Varidi, M. J. (2015). Extraction Optimization of Fenugreek Seed Protein. Science of Food and Agriculture , 15, 3165–3176.
[6] Shahosseini, S. R., Javadian, S. R., & Safari, R. (2023). Evaluation of antibacterial and antioxidant activities of Liza abu viscera protein hydrolysate. Journal of Innovation in Food Science and Technology , 15(1), 143-155.
[7] Bumandalai, O., Bayliss, K. L., & Moheimani, N. R. (2024). Innovative processes for combating contaminants in fresh Spirulina. Algal Research , 78, 103397.
[8] Lafarga, T., Fernández-Sevilla, J. M., González-López, C., & Acién-Fernández, F. G. (2020). Spirulina for the food and functional food industries. Food Research International , 137, Article 109356.
[9] Nemati, M., Javadian, S. R., Ovissipour, M., & Keshavarz, M. (2012). A study on the properties of alosa (Alosa caspia) by-products protein hydrolysates using commercial enzymes. World Applied Sciences Journal , 18(7), 950-956.
[10] Yaghoubzadeh, Z., Peyravii Ghadikolaii, F., Kaboosi, H., Safari, R., & Fattahi, E. (2020). Antioxidant Activity and Anticancer Effect of Bioactive Peptides from Rainbow Trout (Oncorhynchus mykiss) Skin Hydrolysate. International Journal of Peptide Research and Therapeutics , 26, 625–632.
[11] AOAC. (2005). Official Method of Analysis (17th ed.). Washington, DC: Association of Official Analytical Chemists.
[12] Dorvaj, Z., Javadian, S. R., Oveissipour, M., & Nemati, M. (2013). Use of Protein Hydrolysates From Caspian Sea Sprat (Clupeonella Cultiventris) As A Nitrogen Source For Bacteria Growth Media (Vibrio Anguillarum, Bacillus Licheniformis, Bacillus Subtilis). Journal of Aquatic Animals & Fisheries, 4(15), 11-18.
[13] Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: Production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43-81.
[14] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114, 1198-1205.
[15] Sheih, I. C., Wu, T. K., & Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology, 100(13), 3419-3425.
[16] Bera, M. B., & Mukherjee, R. K. (1989). Solubility, emulsifying, and foaming properties of rice bran protein concentrates. Journal of Food Science, 54(1), 142-145.
[17] Slizyte, R., Mozuraitytė, R., Martínez-Alvarez, O., Falch, E., Fouchereau-Peron, M., & Rustad, T. (2009). Functional, bioactive, and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry, 44, 668-677.
[18] Shahidi, F., & Onodenalore, A. (1995). Water dispersions of myofibrillar proteins from capelin (Mallotus villosus). Food Chemistry, 53, 51-54.
[19] Tańska, M., Konopka, I., & Ruszkowska, M. (2017). Sensory, physico-chemical, and water sorption properties of corn extrudates enriched with Spirulina. Plant Foods for Human Nutrition, 72, 250-257.
[20] Koli, D. K., Rudra, S. G., Bhowmik, A., & Pabbi, S. (2022). Nutritional, functional, textural, and sensory evaluation of Spirulina enriched green pasta: A potential dietary and health supplement. Foods, 11(7), 979. https://doi.org/10.3390/foods11070979
[21] El-Hameed, A., Mahmoud, K., El-Maatti, A., El-Saidy, S. M., & Ahmed, S. M. (2018). Effect of adding Spirulina platensis in pasta products (spaghetti). Journal of Agricultural Research, 45, 293-300.
[22] Taghdiri, S., Emtyazjoo, M., Azizi, M. H., Ariaii, P., & Sedaghati, M. (2023). The effect of hydrolyzed protein obtained from Chlorella vulgaris on the shelf life and quality of oil cake during the storage period. Food Measure. Advance online publication. https://doi.org/10.1007/s11694-023-02186-y
[23] Mirsadeghi Darabi, D., Ariaii, P., Safari, R., & Ahmadi, M. (2022). Effect of clover sprouts protein hydrolysates as an egg substitute on physicochemical and sensory properties of mayonnaise. Food Science & Nutrition, 10, 253–263.
[24] Ghelich, S., Ariaii, P., & Ahmadi, M. (2022). Evaluation of Functional Properties of Wheat Germ Protein Hydrolysates and Its Effect on Physicochemical Properties of Frozen Yogurt. International Journal of Peptide Research and Therapeutics, 28(1), 69.
[25] FAO/WHO. (1990). Energy and protein requirements. Report of joint FAO/WHO/UNU Expert Consultation Technical Report. FAO/WHO and United Nations University, Geneva, Series No. 724.
[26] Firmansyah, M., & Abduh, M. Y. (2019). Production of protein hydrolysate containing antioxidant activity from Hermetia illucens. Heliyon, 5(6), e02005.
[27] Yathisha, U. G., Vaidya, S., & Bangera Sheshappa, M. (2022). Functional Properties of Protein Hydrolyzate from Ribbon Fish (Lepturacanthus Savala) as Prepared by Enzymatic hydrolysis. International Journal of Food Properties, 25(1), 187-203.
[28] Chew, R. M., Mohd Zin, Z., Ahmad, A., Mohtar, N. F., Rusli, N. D., & Zainol, M. K. (2020). Physicochemical and sensory properties of deep-fried battered squid containing Brownstripe red snapper (Lutjanus vitta) protein hydrolysate. Food Research, 4(4), 1245-1253.
[29] Morsy, O. M., Sharoba, A. M., El-Desouky, A. I., Bahlol, H. E. M., & Abd El Mawla, E. M. (2014). Production and evaluation of some extruded food products using spirulina algae. Annals of Agricultural Science, Moshtohor, 52(4), 495-510.
[30] Varedesara, M. S., Ariaii, P., & Hesari, J. (2021). The effect of grape seed protein hydrolysate on the properties of stirred yogurt and the viability of Lactobacillus casei in it. Food Science and Nutrition, 9, 2180–2190.
[31] Aderinola, T., Fagbemi, T., Enujiugha, V., Monisola Alashi, A., & Emmanuel Aluko, R. (2018). Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon, 4(10), e00877.
[32] Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., & Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chemistry, 107, 1485-1493.
[33] Bahram, S., Khezri, M., & Javadian, S. R. (2020). Evaluation of antioxidant and antimicrobial properties of hydrolyzed protein of Saurida tumbil. Experimental Animal Biology, 9(2), 23-35.
[34] Sheih, I. C., Wu, T. K., & Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology, 100(13), 3419-3425.
[35] Wen, C., Zhang, J., Zhang, H., Duan, Y., & Ma, H. (2019). Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates. Food Chemistry, 299, 30: 125165.
[36] Wouters, A. G. B., Rombouts, I., Fierens, E., Brijs, K., & Delcour, J. A. (2016). Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Comprehensive Reviews in Food Science and Food Safety, 15(4), 786-800.
[37] Ma, W., Qi, B., Sami, R., Jiang, L., Li, Y., & Wang, H. (2018). Conformational and functional properties of soybean proteins produced by extrusion-hydrolysis approach. International Journal of Analytical Chemistry, 2018, 9182508.
[38] Zayas, J. F. (1997). Emulsifying properties of proteins. In Functionality of Proteins in Food (pp. 134–227). Springer.
[39] Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Journal of Food Research International, 43, 538–546.
[40] García-Moreno, P. J., Guadix, A., Guadix, E. M., & Jacobsen, C. (2016). Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chemistry, 253, 124-135.
[41] Mazloomi-Kiyapey, S. N., Sadeghi-Mahoonak, A., Ranjbar-Nedamani, E., & Nourmohammadi, E. (2019). Production of antioxidant peptides through hydrolysis of medicinal pumpkin seed protein using pepsin enzyme and the evaluation of their functional and nutritional properties. ARYA Atherosclerosis, 15(5), 218-227.
[42] Sakanaka, S., Tachibana, Y., & Okada, Y. (2005). Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chemistry, 89, 569-575.