اثر جایگزینی دی اکسید گوگرد با نانو اکسیدروی بر ویژگی‌های فیزیکوشیمیایی و حسی کشمش تولیدی

نویسندگان
1 دانشگاه ملایر
2 دانشگاه بوعلی سینا
3 گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران
چکیده
هدف از این مطالعه بررسی تأثیر پوشش‌دهی انگور با افشاندن غلظت­های متفاوت نانوذرات اکسید‌روی (5/0 و 1 گرم در لیتر) در دو مرحله قبل و پس از برداشت در مقایسه با روش گازدهی انگور تازه برداشت شده با دی­اکسید گوگرد (5/2، 5/3 و 5/4 گرم گوگرد در هر کیلوگرم انگور) بر ویژگیهای فیزیکوشیمیایی و حسی کشمش تولیدی بود. انگورها به روش آفتابی خشک شدند و ویژگی‌های فیزیکوشیمیایی درصد رطوبت، مقدار pH، مقدار aw، درصد اسیدیته، دی­اکسید گوگرد آزاد، دی­اکسید گوگرد کل و ویژگی‌های حسی کشمش تولیدی پس از یکنواخت شدن رطوبت با روش فاکتوریل و بر اساس طرح آماری کاملا تصادفی ارزیابی گردید. پوشش دهی انگور قبل و پس از برداشت با نانوذرات اکسیدروی در غلظت 1 گرم در لیتر و گازدهی با دی اکسید گوگرد پس از برداشت، به ترتیب میزان رطوبت و aw کشمش تولیدی را در مقایسه با نمونه شاهد افزایش و کاهش داد (05/0p<). pH نمونه‌های پوشش داده شده با نانوذرات اکسیدروی قبل از برداشت به جز در غلظت 5/0 گرم در لیتر (45/3)، در مقایسه با شاهد (7/3) تفاوت معنی‌داری نداشت. با افزایش غلظت دی­اکسید گوگرد تا مقدار 5/3 و 5/4 گرم گوگرد در هر کیلوگرم انگور، pH نمونه‌های کشمش در مقایسه با شاهد (7/3) به ترتیب افزایش (8/3) و کاهش (45/3) یافت (05/0p<). اسیدیته نمونه‌های گازدهی شده با گاز گوگرد در مقایسه با نمونه شاهد (817/0 درصد) افزایش معنی‌داری داشت (05/0p<). غلظت دی­اکسید گوگرد آزاد و دی­اکسید گوگرد کل در نمونه‌های گازدهی شده در مقایسه با سایر نمونه‌ها و نمونه شاهد به شکل معنی داری بیشتر بود(05/0p<). کشمش حاصل از انگور‌های پوشش داده شده با نانواکسیدروی در غلظت 5/0 گرم در لیتر در مرحله قبل از برداشت و کشمش حاصل از انگور‌های گازدهی شده با گوگرد با غلظت 5/2 گرم در هر کیلوگرم انگور بیشترین امتیاز حسی پذیرش کلی را از ارزیاب‌ها دریافت نمودند(05/0p<).
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Sulphur dioxide replacement with Nano zinc oxide on physicochemical and sensory properties of raisin

نویسندگان English

vahid jamali 1
aryou emamifar 2
Hadi Beiginejad 1
Moradi Moradi 1
Mousa Rasouli 3
1 Malayer University
2 Bu-Ali Sina University
3 Department of Horticultural Science Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
چکیده English

The aim of this study was to investigate the effect of coating grapes by spraying with different concentrations of zinc oxide nanoparticles (0.5 and 1 g/L) both before and after harvest compared to postharvest fumigation of grapes with sulfur dioxide (2.5, 3.5, and 4.5 g sulfur per kg of grapes) on the physicochemical and sensory properties of raisins. The grapes were sun-dried and the resulting physicochemical properties of raisins, such as moisture content, pH, water activity (aw), acidity, free sulfur dioxide, total sulfur dioxide and sensory properties, were evaluated using a factorial design based on a completely randomized statistical model. The results showed that coating with zinc oxide at a concentration of 1 g/L before and after harvest and fumigation with sulfur dioxide after harvest affected the moisture and aw levels of the raisins, with moisture content increasing and aw decreasing compared to the control (p<0.05). No significant differnces was observed in pH of all the raisins coated with zinc oxide as compared to control (3.7) except for the sample coated with 0.5 g/L nano zinc oxide before harvest (3.45). By increasing the sulfur concentrations up to 3.5 and 4.5 g/kg grape, the pH of all the raisins compared to control (3.7), increased (3.8), and decreased (3.45), respectively (p<0.05). Acidity of the all the sulfur-treated samples increased (p<0.05), compared to the control (0.817 %). The concentration of free and total sulfur dioxide was significantly higher in the sulfur-treated samples compared to other treatments and the control (p<0.05). Raisins from grapes coated with 0.5 g/L zinc oxide prior to harvest and raisins treated with 2.5 g/kg sulfur dioxide received the highest overall sensory acceptability ratings from panelists (p<0.05).


کلیدواژه‌ها English

Coating
Sulfur Dioxide
Raisin Nano Zinc Oxide
[1] Tang, G. Y., Zhao, C. N., Liu, Q., Feng, X. L., Xu, X. Y., Cao, S. Y., ... & Li, H. B. (2018). Potential of grape wastes as a natural source of bioactive compounds. Molecules, 23(10), 2598.
[2] Helvacıoğlu, S., Charehsaz, M., Güzelmeriç, E., Türköz, A. E., Yeşilada, E., & Aydın, A. (2018). Comparatively investigation of grape molasses produced by conventional and industrial techniques. Marmara pharmaceutical journal, 22(1), 44-51.
[3] Anonymous, Annual Assessment of the World Vine and Wine Sector in 2022. 2023.
[4] Mehraban Sange Atash, M. Mahmoudi, Z. Pour Azrang, H. Amir Saleh, V. Nowzari Aval, Yasin. (2014). Determining the amount of residual sulfur dioxide and some physicochemical properties of raisins produced in Razavi Khorasan Province. JOURNAL OF FOOD HYGIENE, 5(19): 49-58.
[5] Ayubi, A., Investigating the effect of drying conditions, food coating and storage conditions on the quality characteristics and shelf life of green raisins. Doctoral thesis of food science and industry, Ferdowsi University of Mashhad, 2012.
[6] Emamifar, A. (2018). Evaluation of zinc oxide nanoparticles edible coating effect on microbial, physicochemical and sensorial characteristics of black table grape during storage. Innovative Food Technologies (IFT) ,. 5(4): 663-680.
[7] Ghasemzadeh, R., Karbassi, A., & Ghoddousi, H. B. (2008). Application of edible coating for improvement of quality and shelf-life of raisins. World applied sciences journal, 3(1), 82-87.
[8] Nasiri, A. Malakootian, M . Tamaddon, F . Synthesis Nano ZnO Assisted by Ultrasound Irradiation and Evaluation of Antimicrobial Properties. 2013.
[9] Ayoubi, A. Sedaghat, N. Kashaninejad, M. Mohebbi, M. Nassiri Mahalati, M.(2015). Effect of lipid based edible coatings on physicochemical and microbial properties of raisin. Iranian Food Science and Technology Research Journal Vol. 11, No. 5, 496-507
[10] Youseftabar,N. Sedaghat, N. Mohebbat, M. Investigating the effect of vacuum packaging and monoglycerol stearate and carnauba wax edible coatings on the physicochemical and microbial characteristics of exported raisins. 2012.
[11] Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57-64.
[12] Takma, D. K., & Korel, F. (2017). Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes. Food chemistry, 221, 187-195.
[13] Castillo, S., Navarro, D., Zapata, P. J., Guillén, F., Valero, D., Serrano, M., & Martínez-Romero, D. (2010). Antifungal efficacy of Aloe vera in vitro and its use as a preharvest treatment to maintain postharvest table grape quality. Postharvest Biology and technology, 57(3), 183-188.
[14] Shuakhi, F. Madani, S. The use of acetic acid as a substitute for sulfur in the production of raisins. The first national grape festival of Qazvin-Takestan province, 2013: 252-261.
[15] Jamali, V., Emamifar, A., Beiginejad, H., Moradi, M., & Rasouli, M. (2024). Enhancing grape freshness and quality with nano zinc oxide coating: a study on post-harvest preservation and grape molasses. Journal of Food Measurement and Characterization, 1-12.
[16] Gholami Parshkohi, M., Mirmoradi M., Abdulali Zadeh. E,. Salimi Bani. M., (2020). The effect of two-stage drying of red willow grapes on the quality of raisins. Journal of Innovation in Food Science and Technology. Page: 105 - 113
[17] Nikjoo, R., Peighambardoust, S. H., & Olad Ghaffari, A. (2020). Effect of different concentrations of Arabic gum and different drying temperatures on physiccal properties of spray dried peppermint extract powder. Food Processing and Preservation Journal, 12(1), 113-128.
[18] Güleç, H., Kundakçi, A., & Ergönül, B. (2009). Changes in quality attributes of intermediate-moisture raisins during storage. International Journal of Food Sciences and Nutrition, 60(3), 210-223.
[19] Derradji-Benmeziane, F., Djamai, R., & Cadot, Y. (2014). Antioxidant capacity, total phenolic, carotenoid, and vitamin C contents of five table grape varieties from Algeria and their correlations. OENO One, 48(2), 153-162.
[20] Kadi, R. H. (2023). Development of zinc oxide nanoparticles as safe coating for the shelf life extension of grapes (Vitisvinifera L., Red Globe) fruits. Materials Express, 13(1), 182-188.
[21] Suresh, J., Pradheesh, G., Alexramani, V., Sundrarajan, M., Hong, S.I. (2018). Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities, Advances in Natural Sciences: Nanoscience and Nanotechnology 9(1) 015008.
[22] Tymoszuk, A., & Wojnarowicz, J. (2020). Zinc oxide and zinc oxide nanoparticles impact on in vitro germination and seedling growth in Allium cepa L. Materials, 13(12), 2784.
[23] Al-Bedairy, M. A., & Alshamsi, H. A. H. (2018). Environmentally friendly preparation of zinc oxide, study catalytic performance of photodegradation by sunlight for rhodamine B dye. Eurasian Journal of Analytical Chemistry, 13(6), 1-9.
[24] AlAskari, G., Kahouadji, A., Khedid, K., Charof, R., & Mennane, Z. (2012). Physicochemical and microbiological study of “raisin”, local and imported (Morocco). Middle-East Journal of Scientific Research, 11(1), 1-6.
[25] Ghasemzadeh, R., Karbassi, A., & Ghoddousi, H. B. (2008). Application of edible coating for improvement of quality and shelf-life of raisins. World applied sciences journal, 3(1), 82-87. [26] Anonymous.(2012). Iranian National Standardization Organization. Seedless raisin-Specification and test
Methods. 7th.Revision.
[27] Akev, K., Koyuncu, M. A., & Erbaş, D. (2018). Quality of raisins under different packaging and storage conditions. The Journal of Horticultural Science and Biotechnology, 93(1), 107
[28] Alikhani, M., & Daraei Garmakhany, A. (2012). Effect of microencapsulated essential oils on storage life and quality of strawberry (F ragaria ananassa cv. C amarosa). Quality Assurance and Safety of Crops & Foods, 4(2), 106-112.
[29] Kim, I.-H., Oh, Y. A., Lee, H., Song, K. B., & Min, S. C. (2014). Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT-Food Science and Technology, 58. 10-1, (1).
[30] Iqbal, M., Khan, A. R., Iqbal, M., & Ahmed, J. (2020). Quality and sulfur residues of raisin made after sulfur fumigation at different time intervals. Journal of Postharvest Technology, 8(2), 22-25.
[31] Lydakis, D., Fysarakis, I., Papadimitriou, M., & Kolioradakis, G. (2003). Optimization study of sulfur dioxide application in processing of sultana raisins. International Journal of food properties, 6(3), 393-403.
[32] Song, G., Rahman, M., & Perera, C. (2000). Diffusivity of sulphur dioxide in green banana as a function of temperature and concentration. International Journal of food properties, 3(2), 317-322