ارزیابی ویژگی‌های پروبیوتیکی، ضد قارچی و آنتی‌اکسیدانی مخمر جدا شده از خمیرترش بلوط

نویسندگان
1 گروه علوم و مهندسی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 مرکز تحقیقات سلامت غذا، دارو و فراورده‌های طبیعی، دانشگاه علوم پزشکی گلستان، گرگان، ایران
چکیده
احتمال مواجهه با مخمرهای پروبیوتیک که از قابلیت­های عملکردی مناسبی برخوردار باشند در بستره­های طبیعی که کمتر مورد مطالعه قرار گرفته­اند وجود دارد. در این پژوهش، مخمر غالب از خمیرترش بلوط، جداسازی و با استفاده از PCR شناسایی شد. سپس ویژگیهای پروبیوتیکی شامل زنده‌مانی در شرایط شبیهسازی شده دستگاه گوارش، قابلیت خود اتصالی و دگر اتصالی، آبگریزی، اثر ضد باکتریایی، مقاومت آنتی‌بیوتیکی، آنتی‌مایکوتیکی و قابلیت همولیز خون و همچنین قابلیت آنتی‌اکسیدانی و اثر ضدقارچی این جدایه مخمری بر روی Aspergillus flavus مورد مطالعه قرارگرفت. توالییابی محصولات PCR منجر به شناسایی مخمر Pichia kudriavzevii به عنوان جدایه مخمری غالب خمیرترش بلوط شد. میزان زندهمانی جدایه مذکور در شرایط شبیه‌سازی شده دستگاه گوارش 93/91 درصد بود. قابلیت خود اتصالی این جدایه برابر با 65/84 درصد و میزان آبگریزی آن در برابر هگزان و زایلن به ترتیب 15/35 و 70/21 درصد بود. همچنین اثر ضد باکتریایی مخمر P. kudriavzevii مورد مطالعه در این پژوهش در برابر Listeria monocytogenes معادل 58/85 درصد و به شکل معنی‌داری (05/0P<) از سایر عوامل بیماری‌زای مورد آزمون، بیشتر بود. کمترین اثر ضد باکتریایی نیز در برابر Salmonella enterica مشاهده شد. میزان قابلیت دگر اتصالی جدایه مخمری غالب در برابر عوامل بیماری‌زای مورد آزمون، تفاوت معنی‌داری نداشت. علاوه بر این، جدایه مذکور فاقد فعالیت همولیتیکی بود و نسبت به تمامی آنتی‌بیوتیک‌های مورد بررسی، مقاوم بود اما در مقابل ترکیبات آنتی‌مایکوتیک ایتراکونازول، کتوکونازول و ناتامایسین، حساسیت نسبی نشان داد و همچنین نسبت به سوربات پتاسیم مقاوم بود. اثر ضد قارچی این جدایه در برابر A. flavus ‌تایید شد و میزان قابلیت آنتی‌اکسیدانی آن 67/78 درصد بود. بر این اساس، جدایه P. kudriavzevii از قابلیت مناسبی برای استفاده به عنوان کشت پروبیوتیک جهت تولید محصولات غذایی تخمیری برخوردار است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of probiotic, antifungal, and antioxidant properties of the predominant yeast isolated from acorn sourdough

نویسندگان English

Hossein Purabdolah 1
Alireza Sadeghi 1
Seid Mahdi Jafari 1
Maryam Ebrahimi 2
Hoda Shahiri Tabarestani 1
1 Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Food, Drug and Natural Products Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
چکیده English

There is always the possibility of encountering probiotic yeasts with functional capabilities in natural habitats that have been less studied. In the present study, the predominant yeast from acorn sourdough was isolated and identified using PCR. The probiotic properties of the isolate, as well as its antifungal and antioxidant activities were also investigated. Sequencing results of PCR products led to the identification of Pichia kudriavzevii as the predominant yeast isolate. The survival rate of the isolate in simulated gastrointestinal conditions was 91.93%. The auto-aggregation ability of the isolate was equal to 84.65%, and its hydrophobicity against hexane and xylene was 35.15% and 21.70%, respectively. The antibacterial activity of P. kudriavzevii studied in this research against Listeria monocytogenes was 85.58%, which was significantly (P<0.05) higher than other studied foodborne bacteria. However, the co-aggregation ability of the yeast isolate against tested pathogens showed no significant difference. Furthermore, the isolate showed no hemolytic activity, and it was resistant to all tested antibiotics, but showed relative sensitivity to the antimycotic agents including itraconazole, ketoconazole, and natamycin, while being resistant to potassium sorbate. The antifungal activity of the isolate against A. flavus was also confirmed, with antioxidant activity measured at 78.67%. Accordingly, P. kudriavzevii yeast isolate can be introduced as a suitable candidate for use as a probiotic and/or protective culture in fermentation industries.

کلیدواژه‌ها English

Acorn sourdough
yeast isolate
probiotic properties
antifungal effect
Antioxidant activity
[1] Saad, N., Delattre, C., Urdaci, M., Schmitter, J.M., & Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT-Food Science and Technology, 50(1), 1-16.
[2] Sadeghi, A., Ebrahimi, M., Shahryari, S., Kharazmi, M. S., & Jafari, S. M. (2022). Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends in Food Science & Technology, 128, 278-295.
[3] Hatoum, R., Labrie, S., & Fliss, I. (2012). Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3, 421.
[4] Shruthi, B., Deepa, N., Somashekaraiah, R., Adithi, G., Divyashree, S., & Sreenivasa, M. Y. (2022). Exploring biotechnological and functional characteristics of probiotic yeasts: a review. Biotechnology Reports, e00716.
[5] Shahryari, S., Sadeghi, A., Ebrahimi, M., Sadeghi Mahoonak, A., & Moayedi, A. (2022). Evaluation of probiotic and antifungal properties of the yeast isolated from buckwheat sourdough. Iranian Food Science and Technology Research Journal, 18(5), 575-588.
[6] Shruthi, B., Adithi, G., Deepa, N., Divyashree, S., & Sreenivasa, M. Y. (2024). Probiotic and functional attributes of yeasts isolated from different traditional fermented foods and products. Probiotics and Antimicrobial Proteins, 1-19.
[7] Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.P., Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169-177.‏
[8] Alkalbani, N. S., Osaili, T. M., Al-Nabulsi, A. A., Obaid, R. S., Olaimat, A. N., Liu, S. Q., & Ayyash, M. M. (2022). In vitro characterization and identification of potential probiotic yeasts isolated from fermented dairy and non-dairy food products. Journal of Fungi, 8(5), 544.
[9] Lara-Hidalgo, C. E., Dorantes-Álvarez, L., Hernández-Sánchez, H., Santoyo-Tepole, F., Martínez-Torres, A., Villa-Tanaca, L., & Hernández-Rodríguez, C. (2019). Isolation of yeasts from guajillo pepper (Capsicum annuum L.) fermentation and study of some probiotic characteristics. Probiotics and Antimicrobial Proteins, 11, 748-764.
[10] AACC, International. (2010). Approved methods of the American association of cereal chemists. 11th Ed. The St. Paul.
[11] Purabdolah, H., Sadeghi, A., Ebrahimi, M., Kashaninejad, M., & Mohamadzadeh, J. (2022). Evaluation of probiotic and antifungal properties of the predominant LAB isolated from fermented acorn (Quercus persica). Journal of Food Science and Technology (Iran), 19(124), 171-183.
[12] Katina, K., Heiniö, R. L., Autio, K., & Poutanen, K. (2006). Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT-Food Science and Technology, 39(10), 1189-1202.
[13] Palla, M., Agnolucci, M., Calzone, A., Giovannetti, M., Di Cagno, R., Gobbetti, M., et al. (2019). Exploitation of autochthonous Tuscan sourdough yeasts as potential starters. International Journal of Food Microbiology, 302, 59-68.
[14] White, T.J., Bruns, T., Lee, S.J.W.T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322.
[15] Hsiung, R. T., Fang, W. T., LePage, B. A., Hsu, S. A., Hsu, C. H., & Chou, J. Y. (2021). In vitro properties of potential probiotic indigenous yeasts originating from fermented food and beverages in Taiwan. Probiotics and Antimicrobial Proteins, 13, 113-124.
[16] Bonatsou, S., Karamouza, M., Zoumpopoulou, G., Mavrogonatou, E., Kletsas, D., & Papadimitriou, K. (2018). Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. International Journal of Food Microbiology, 271, 48-59.
[17] Gil-Rodriguez, A.M., Carrascosa, A.V., & Requena, T. (2015). Yeasts in foods and beverages: In vitro characterisation of probiotic traits. LWT- Food Science and Technology, 64, 1156-1162.
[18] Fadda, M.E., Mossa, V., Deplano, M., Pisano, M.B., & Cosentino, S. (2017). In vitro screening of Kluyveromyces strains isolated from Fiore Sardo cheese for potential use as probiotics. LWT- Food Science and Technology, 75, 100-106.
[19] Zarali, M., Sadeghi, A., Jafari, S. M., Ebrahimi, M., & Mahoonak, A. S. (2023). Enhanced viability and improved in situ antibacterial activity of the probiotic LAB microencapsulated layer-by-layer in alginate beads coated with nisin. Food Bioscience, 53, 102593.
[20] Amorim, J. C., Piccoli, R. H., & Duarte, W. F. (2018). Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Research International, 107, 518-527.
[21] Ruggirello, M., Nucera, D., Cannoni, M., Peraino, A., Rosso, F., Fontana, M., et al. (2019). Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Research International, 115, 519-525.
[22] Muche, N., Geremew, T., & Jiru, T. M. (2023). Isolation and characterization of potential probiotic yeasts from Ethiopian injera sourdough. 3 Biotech, 13(9), 300.
[23] Rahimi, D., Sadeghi, A., Kashaninejad, M., & Ebrahimi, M. (2024). Postbiotic characterization of a potential probiotic yeast isolate, and its microencapsulation in alginate beads coated layer-by-layer with chitosan. Heliyon, 10(7).
[24] Kim, Y. J., Yu, H. H., Song, Y. J., Park, Y. J., Lee, N. K., & Paik, H. D. (2021). Anti-biofilm effect of the cell-free supernatant of probiotic Saccharomyces cerevisiae against Listeria monocytogenes. Food Control, 121, 107667.
[25] Chen, Y. J., Wang, C. J., Hou, W. Q., Wang, X. S., Gali, B. G., YANG, S. Q., ... & WU, Y. G. (2017). Effects of antibacterial compounds produced by Saccharomyces cerevisiae in Koumiss on pathogenic Escherichia coli Os and its cell surface characteristics. Journal of Integrative Agriculture, 16(3), 742-748.
[26] Younis, G., Awad, A., Dawod, R. E., & Yousef, N. E. (2017). Antimicrobial activity of yeasts against some pathogenic bacteria. Veterinary World, 10(8), 979.
[27] Al-Sahlany, S. T. G., Altemimi, A. B., Abd Al-Manhel, A. J., Niamah, A. K., Lakhssassi, N., & Ibrahim, S. A. (2020). Purification of bioactive peptide with antimicrobial properties produced by Saccharomyces cerevisiae. Foods, 9(3).
[28] Menezes, A. G. T., Ramos, C. L., Cenzi, G., Melo, D. S., Dias, D. R., & Schwan, R. F. (2020). Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics and Antimicrobial Proteins, 12, 280-288.
[29] Kline, K. A., Fälker, S., Dahlberg, S., Normark, S., & Henriques-Normark, B. (2009). Bacterial adhesins in host-microbe interactions. Cell Host & Microbe, 5(6), 580-592.
[30] Suvarna, S., Dsouza, J., Ragavan, M. L., & Das, N. (2018). Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Science and Biotechnology, 27(3), 745-753.‏
[31] Fernández-Pacheco, P., Ramos Monge, I. M., Fernández-González, M., Poveda Colado, J. M., & Arévalo-Villena, M. (2021). Safety evaluation of yeasts with probiotic potential. Frontiers in Nutrition, 8, 659328.
[32] Banik, A., Mondal, J., Rakshit, S., Ghosh, K., Sha, S. P., Kumar, Halder, S., Ghosh, C., & Mondal, K. C. (2019). Amelioration of cold-induced gastric injury by a yeast probiotic isolated from traditional fermented foods. Journal of Functional Foods, 59, 164–173.
[33] Perricone, M., Bevilacqua, A., Corbo, M., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26-35.
[34] Kanafani, Z. A., & Perfect, j. R. (2014). Resistance to antifungal agents: mechanisms and clinical impact. Clinical Infectious Diseases, 46(1), 120-128.‏
[35] Alasmar, R., Ul-Hassan, Z., Zeidan, R., Al-Thani, R., Al-Shamary, N., Alnaimi, H., ... & Jaoua, S. (2020). Isolation of a novel Kluyveromyces marxianus strain QKM-4 and evidence of its volatilome production and binding potentialities in the biocontrol of toxigenic fungi and their mycotoxins. ACS Omega, 5(28), 17637-17645.
[36] Romero-Luna, H. E., Hernández-Sánchez, H., Ribas-Aparicio, R. M., Cauich-Sánchez, P. I., & Dávila-Ortiz, G. (2019). Evaluation of the probiotic potential of Saccharomyces cerevisiae Strain (C41) isolated from Tibicos by in vitro studies. Probiotics and Antimicrobial Proteins, 11, 794-800.
[37] Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L.A., & Manzoor, N. (2011) Induction of oxidative stress as a possible mechanism of the antifungal action of three phenylpropanoids. FEMS Yeast Research, 11(1):114-122.