[1] Saad, N., Delattre, C., Urdaci, M., Schmitter, J.M., & Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT-Food Science and Technology, 50(1), 1-16.
[2] Sadeghi, A., Ebrahimi, M., Shahryari, S., Kharazmi, M. S., & Jafari, S. M. (2022). Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends in Food Science & Technology, 128, 278-295.
[3] Hatoum, R., Labrie, S., & Fliss, I. (2012). Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3, 421.
[4] Shruthi, B., Deepa, N., Somashekaraiah, R., Adithi, G., Divyashree, S., & Sreenivasa, M. Y. (2022). Exploring biotechnological and functional characteristics of probiotic yeasts: a review. Biotechnology Reports, e00716.
[5] Shahryari, S., Sadeghi, A., Ebrahimi, M., Sadeghi Mahoonak, A., & Moayedi, A. (2022). Evaluation of probiotic and antifungal properties of the yeast isolated from buckwheat sourdough. Iranian Food Science and Technology Research Journal, 18(5), 575-588.
[6] Shruthi, B., Adithi, G., Deepa, N., Divyashree, S., & Sreenivasa, M. Y. (2024). Probiotic and functional attributes of yeasts isolated from different traditional fermented foods and products. Probiotics and Antimicrobial Proteins, 1-19.
[7] Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.P., Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169-177.
[8] Alkalbani, N. S., Osaili, T. M., Al-Nabulsi, A. A., Obaid, R. S., Olaimat, A. N., Liu, S. Q., & Ayyash, M. M. (2022). In vitro characterization and identification of potential probiotic yeasts isolated from fermented dairy and non-dairy food products. Journal of Fungi, 8(5), 544.
[9] Lara-Hidalgo, C. E., Dorantes-Álvarez, L., Hernández-Sánchez, H., Santoyo-Tepole, F., Martínez-Torres, A., Villa-Tanaca, L., & Hernández-Rodríguez, C. (2019). Isolation of yeasts from guajillo pepper (Capsicum annuum L.) fermentation and study of some probiotic characteristics. Probiotics and Antimicrobial Proteins, 11, 748-764.
[10] AACC, International. (2010). Approved methods of the American association of cereal chemists. 11th Ed. The St. Paul.
[11] Purabdolah, H., Sadeghi, A., Ebrahimi, M., Kashaninejad, M., & Mohamadzadeh, J. (2022). Evaluation of probiotic and antifungal properties of the predominant LAB isolated from fermented acorn (Quercus persica). Journal of Food Science and Technology (Iran), 19(124), 171-183.
[12] Katina, K., Heiniö, R. L., Autio, K., & Poutanen, K. (2006). Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT-Food Science and Technology, 39(10), 1189-1202.
[13] Palla, M., Agnolucci, M., Calzone, A., Giovannetti, M., Di Cagno, R., Gobbetti, M., et al. (2019). Exploitation of autochthonous Tuscan sourdough yeasts as potential starters. International Journal of Food Microbiology, 302, 59-68.
[14] White, T.J., Bruns, T., Lee, S.J.W.T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322.
[15] Hsiung, R. T., Fang, W. T., LePage, B. A., Hsu, S. A., Hsu, C. H., & Chou, J. Y. (2021). In vitro properties of potential probiotic indigenous yeasts originating from fermented food and beverages in Taiwan. Probiotics and Antimicrobial Proteins, 13, 113-124.
[16] Bonatsou, S., Karamouza, M., Zoumpopoulou, G., Mavrogonatou, E., Kletsas, D., & Papadimitriou, K. (2018). Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. International Journal of Food Microbiology, 271, 48-59.
[17] Gil-Rodriguez, A.M., Carrascosa, A.V., & Requena, T. (2015). Yeasts in foods and beverages: In vitro characterisation of probiotic traits. LWT- Food Science and Technology, 64, 1156-1162.
[18] Fadda, M.E., Mossa, V., Deplano, M., Pisano, M.B., & Cosentino, S. (2017). In vitro screening of Kluyveromyces strains isolated from Fiore Sardo cheese for potential use as probiotics. LWT- Food Science and Technology, 75, 100-106.
[19] Zarali, M., Sadeghi, A., Jafari, S. M., Ebrahimi, M., & Mahoonak, A. S. (2023). Enhanced viability and improved in situ antibacterial activity of the probiotic LAB microencapsulated layer-by-layer in alginate beads coated with nisin. Food Bioscience, 53, 102593.
[20] Amorim, J. C., Piccoli, R. H., & Duarte, W. F. (2018). Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Research International, 107, 518-527.
[21] Ruggirello, M., Nucera, D., Cannoni, M., Peraino, A., Rosso, F., Fontana, M., et al. (2019). Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Research International, 115, 519-525.
[22] Muche, N., Geremew, T., & Jiru, T. M. (2023). Isolation and characterization of potential probiotic yeasts from Ethiopian injera sourdough. 3 Biotech, 13(9), 300.
[23] Rahimi, D., Sadeghi, A., Kashaninejad, M., & Ebrahimi, M. (2024). Postbiotic characterization of a potential probiotic yeast isolate, and its microencapsulation in alginate beads coated layer-by-layer with chitosan. Heliyon, 10(7).
[24] Kim, Y. J., Yu, H. H., Song, Y. J., Park, Y. J., Lee, N. K., & Paik, H. D. (2021). Anti-biofilm effect of the cell-free supernatant of probiotic Saccharomyces cerevisiae against Listeria monocytogenes. Food Control, 121, 107667.
[25] Chen, Y. J., Wang, C. J., Hou, W. Q., Wang, X. S., Gali, B. G., YANG, S. Q., ... & WU, Y. G. (2017). Effects of antibacterial compounds produced by Saccharomyces cerevisiae in Koumiss on pathogenic Escherichia coli Os and its cell surface characteristics. Journal of Integrative Agriculture, 16(3), 742-748.
[26] Younis, G., Awad, A., Dawod, R. E., & Yousef, N. E. (2017). Antimicrobial activity of yeasts against some pathogenic bacteria. Veterinary World, 10(8), 979.
[27] Al-Sahlany, S. T. G., Altemimi, A. B., Abd Al-Manhel, A. J., Niamah, A. K., Lakhssassi, N., & Ibrahim, S. A. (2020). Purification of bioactive peptide with antimicrobial properties produced by Saccharomyces cerevisiae. Foods, 9(3).
[28] Menezes, A. G. T., Ramos, C. L., Cenzi, G., Melo, D. S., Dias, D. R., & Schwan, R. F. (2020). Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics and Antimicrobial Proteins, 12, 280-288.
[29] Kline, K. A., Fälker, S., Dahlberg, S., Normark, S., & Henriques-Normark, B. (2009). Bacterial adhesins in host-microbe interactions. Cell Host & Microbe, 5(6), 580-592.
[30] Suvarna, S., Dsouza, J., Ragavan, M. L., & Das, N. (2018). Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Science and Biotechnology, 27(3), 745-753.
[31] Fernández-Pacheco, P., Ramos Monge, I. M., Fernández-González, M., Poveda Colado, J. M., & Arévalo-Villena, M. (2021). Safety evaluation of yeasts with probiotic potential. Frontiers in Nutrition, 8, 659328.
[32] Banik, A., Mondal, J., Rakshit, S., Ghosh, K., Sha, S. P., Kumar, Halder, S., Ghosh, C., & Mondal, K. C. (2019). Amelioration of cold-induced gastric injury by a yeast probiotic isolated from traditional fermented foods. Journal of Functional Foods, 59, 164–173.
[33] Perricone, M., Bevilacqua, A., Corbo, M., & Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiology, 38, 26-35.
[34] Kanafani, Z. A., & Perfect, j. R. (2014). Resistance to antifungal agents: mechanisms and clinical impact. Clinical Infectious Diseases, 46(1), 120-128.
[35] Alasmar, R., Ul-Hassan, Z., Zeidan, R., Al-Thani, R., Al-Shamary, N., Alnaimi, H., ... & Jaoua, S. (2020). Isolation of a novel Kluyveromyces marxianus strain QKM-4 and evidence of its volatilome production and binding potentialities in the biocontrol of toxigenic fungi and their mycotoxins. ACS Omega, 5(28), 17637-17645.
[36] Romero-Luna, H. E., Hernández-Sánchez, H., Ribas-Aparicio, R. M., Cauich-Sánchez, P. I., & Dávila-Ortiz, G. (2019). Evaluation of the probiotic potential of Saccharomyces cerevisiae Strain (C41) isolated from Tibicos by in vitro studies. Probiotics and Antimicrobial Proteins, 11, 794-800.
[37] Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L.A., & Manzoor, N. (2011) Induction of oxidative stress as a possible mechanism of the antifungal action of three phenylpropanoids. FEMS Yeast Research, 11(1):114-122.