جداسازی و شناسایی باکتری های اسید لاکتیک از منابع مختلف و آزمایش توانایی آنها در تولید آنزیم سلولاز

نویسندگان
گروه علوم غذایی، دانشکده کشاورزی، دانشگاه بصره، عراق
چکیده
هدف مطالعه حاضر افزایش کار در زمینه جداسازی میکروارگانیسم‌هایی است که آنزیم‌هایی با کاربردهای عملی، پایداری و صنایع غذایی تولید می‌کنند، با جداسازی و شناسایی سویه‌های باکتری اسید لاکتیک از منابع مختلف، که برخی از آنها حاوی سلولز هستند، که میکروارگانیسم‌ها عمدتاً به آن وابسته هستند. تغذیه و تولیدمثل آنها و در محیطی که در آن یافت می شود وجود دارد و امکان تولید آنزیم سلولاز که یکی از آنزیم های مهم در تجزیه پلی ساکاریدها (سلولز) و تولید مونوساکاریدها و ساده می باشد. قندها این مطالعه شامل جداسازی و شناسایی باکتری لاکتوباسیلوس از منابع مختلف، خالص سازی، غربالگری، شناسایی و تعیین کارایی آنها در تولید آنزیم سلولاز بود. نتایج نشان داد که 15 جدایه از منابع مختلف از جمله خاک، میوه ها، سبزیجات، ترشیجات، لبنیات و احشاء ماهی زنده به دست آمد. برای جداسازی باکتری های اسید لاکتیک از محیط کشت MRS آگار با گرانول های CaCl2 0.5% (w / v) استفاده شد که با آزمون های فنوتیپی، بیوشیمیایی و رنگ آمیزی گرم شناسایی شدند.

دمای بهینه برای تولید 35 درجه سانتی گراد با فعالیت آنزیمی (425 / 3) و فعالیت ویژه (502 / 4)، مقدار pH برابر با 6 با فعالیت آنزیمی (437 / 3) و فعالیت ویژه (399 / 4)، فعالیت آنزیمی (419 / 3) است. و فعالیت ویژه (4.804)، زمان تخمیر 72 ساعت با راندمان (3.065) و فعالیت ویژه (4.305)، بهترین منبع کربن سلولز با راندمان (5.44) و بهترین منبع نیتروژن سبوس گندم بود. با راندمان (3.634) و محتوای تلقیح 5٪ با راندمان (3.399)
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Isolation and Identification of Lactic Acid Bacteria from Different Sources and Testing their Ability to Produce Cellulases Enzyme

نویسندگان English

Sabreen AbdullahMansour
Wael Ali Swadi
Zena Kadhim Issa
Department of Food Science, College of Agriculture, University of Basrah, Iraq.
چکیده English

The current study aims to enhance work in the field of isolating microorganisms that produce enzymes with practical uses, sustainability and food industries, by isolating and identifying lactic acid bacteria strains from different sources, some of which contain cellulose, which microorganisms depend on, primarily for their nutrition and reproduction, and which is present in the environment in which they are found, and the possibility of producing the enzyme Cellulase, which is considered one of the important enzymes in the analysis of polysaccharides (cellulose) and the production of monosaccharides and simple sugars. This study included the isolation and identification of Lactobacillus bacteria from different sources, purification, screening, identification and determination of their efficiency in producing cellulase enzymes. The results showed that fifteen isolates were obtained from various sources including soil, fruits, vegetables, pickles, dairy products and live fish entrails. Agar MRS medium with 0.5% (w/v) CaCl2 granules was used to isolate lactic acid bacteria, which were identified by phenotypic, biochemical and Gram staining tests.

The optimum temperature for production is 35 °C with an enzymatic activity reached (3.425) and Specific activity (4.502), the pH value was 6 with the enzymatic activity reached (3.437) and Specific activity (4.399), the enzymatic activity was (3.419), and specific activity was (4.804), a fermentation time of 72 hours with an efficiency of (3.065) and Specific activity (4.305),the best carbon source cellulose with an efficiency of (5.44), and the best Nitrogen source wheat bran with an efficiency of (3.634) and a inoculum content of 5% with an efficiency of (3.399).

کلیدواژه‌ها English

enzyme-producing bacteria
cellulolytic enzymes
cellulolytic microorganisms
cellulolytic activity
[1] Bintsis, T. [2018], Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. Aims Microbiol., 4, 665–684.
[2] Hill, D., Sugrue, I., Arendt, E., Hill, C., Stanton, C., & Ross, R. P. [2017]. Recent advances in microbial fermentation for dairy and health. F1000Research, 6, 751.
[3] Fidanza, M., Panigrahi, P. and Kollmann, T.R. [2021] Lactiplantibacillus plantarum–Nomad and Ideal Probiotic, Frontiers in Microbiology, V[12] 13.
[4] Quinto, E.J.; Jimenez, P.; Caro, I.; Tejero, J.; Mateo, J.; Girbes, T. [2014] Probiotic Lactic Acid Bacteria: A Review. Food Nutr. Sci. 5, 1765–1775.
[5] Arena, M.P., Silvain, A., Normanno, G., Grieco, F., Drider, D., Spano, G., and Fiocco, D. [2016] Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms, Frontiers in Microbiology, [7] 464.
[6] Abruzzo, A.; Giordani, B.; Parolin, C.; De Gregorio, P.R.; Foschi, C.; Cerchiara, T.; Bigucci, F.; Vitali, B.; Luppi, B. [2021] Lactobacillus crispatus BC1 Biosurfactant Delivered by Hyalurosomes: An Advanced Strategy to Counteract Candida Biofilm. Antibiotics [Basel].10, 33.
[7] Markande, A.R.; Patel, D. and Varjani, S. [2021] A review on biosurfactants: properties, applications and current developments. Bioresour Technol., 330.
[8] Hati, S.; Mandal, S.; Prajapat, J.B.[ 2013], Novel Starters for Value Added Fermented Dairy Products. Curr. Res. Nutr.Food Sci. J. [1], 83–91.
[9] Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y.[2006] Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol.100, 1171–1185.
[10] Mokoena, M.P. [2017] Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules, 22, 1255.
[11] Salminen, S.; Bouley, C.; Boutron-Ruault, M.C.; Cummings, J.H.; Franck, A.; Gibson, G.R.; Isolauri, E.; Moreau, M.C.; Roberfroid, M.; Rowland, I. [2013] Functional food science and gastrointestinal physiology and function. Br. J. Nutr. 1998, 80 [Suppl. 1], S147–S171.
[12] Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; and Watanabe, K. A [2020] taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and :union: of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol., 70,2782–2858.
[13] Ayivi. R.D., Gyawali, R., Krastanov, A, Aljaloud, S.O., Worku, M., Tahergorabi, R., da Silva, R. C. and. Ibrahim. S.A [2020] Lactic Acid Bacteria: Food Safety and Human Health Applications, Dairy , 1, 202–232.
[14] Islam, M., Kumar Sarkar, P., Mohiuddin, A.K.M., Suzauddula, Md. [2019]. Optimization of fermentation condition for cellulase enzyme production from Bacillus sp ,Malaysian Journal of Halal Research Journal [MJHR] V[2], ISSUE 2.
[15] Mandels M [1985] Applications of cellulases. Biochem Soc Trans 13:414–415
[16] Park J, and Park K [2001] Improvement of the physical properties of reprocessed paper by using biological treatment with modified cellulase. Bioresour Technol 79:91–94
[17] Patel, A.K., Singhania, R.R., Sim, S.J. and Pandey, A. [2019] Thermostable cellulases: Current status and perspectives. Bioresour. Technol., 279, 385–392.
[18] Sadhu, S. and Maiti, T.K.[2013] Cellulase Production by Bacteria: A Review. Br. Microbiol. Res. J. 3, 235–258.
[19] Giyatno DC, Retnaningrum E:[2020] Isolation and characterization of exopolysaccharide producer lactic acid bacteria from kersen fruit [Muntingia calabura L.]. J. Sains Dasar. 2020; 9[2]: 42–49.
[20] Fatin, R, and Pumnat, C. [2018] Isolation and Characterization of Biosurfactant Produced by Lactic Acid Bacteria from Indigenous Thai Fermented Foods, International Journal of Food Engineering Vol. 4, No. 4,
[21] Harley, J.P. and Prescott, L.M. [2002] Laboratory Exercises in
microbiology, 5thEd, The McGraw-Hill companies, 449 p.
[22] Hemraj, V.; Diksha, S. and Avneet, G. [2013]. A Review on Commonly Used Biochemical Test for Bacteria. IJLS. 1[1]: 1-7.
[23] Brown, A. E. and Smith, H. R. [2017]. Bensonʼs Microbiological Applications, Laboratory Manual in General Microbiology. 14th ed. McGraw-Hill Higher Education. New York. 438pp.
[24] Forbes, B. A.; Saham, D. F. and Weissfeld, A. S. [2007]. Baily and Scott’s Diagnostic Microbiology. 12thed. Mosby, Inc., an anffilliate of Elsevier, Inc. 1031pp.
[25] Bhagat, S.A and Kokitkar, S.S. [2021] Isolation and identification of bacteria with cellulose-degrading potential from soil and optimization of cellulase production, Journal of Applied Biology & Biotechnology Vol. 9[06], pp. 154-161.
[26] Al- habeb
[27] Shaikh, N.M., Patel, A.A., Mehta, S.A. and Patel, N.D., [2013] Isolation and Screening of Cellulolytic Bacteria Inhabiting Different Environment and Optimization of Cellulase Production” Universal Journal of Environmental Research & Technology, 3[1].
[28] Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Staley, J.T.; Williams, S.T. [1994]. Bergey’s manual of determinative bacteriology, pp. 559-564. 9th ed. William and Wilkins, MD.
[29] Desa, A. [2008]. Strain identification, viability and probiotics properties of Lactobacillus casei Ph. D. Thesis. Victoria university, Werribee Campus Victoria, Australia.
[30] Abada EA, Elbaz RM, Sonbol H, Korany SM. [2021]. Optimization of cellulase production from Bacillus albus [MN755587] and its involvement in bioethanol production. Polish J. Environ. Stud. 30: 2459-2466.
[31] Yakubu1, A., Uba, G. and Vyas, A. [2021] Optimization of Culture Conditions for the Production of Alkaline Cellulase Enzyme Produced from Fusarium oxysporum VSTPDK, JEMAT, [ 9], No 1, 3-9
[32] Rabby, R. I., Ahmed,Z.B., Paul, G. K.,. Chowdhury, N. N., Akter, F., Razu, M. H. Karmaker, P. and Khan, M. [2022] A Combined Study on Optimization, In Silico Modeling, and Genetic Modification of Large Scale Microbial Cellulase Production, Biochemistry Research International, 14 pages
[33] Zhang, S., Wang , Z., Shen, J., Chen, X. and Zhang, J. [2023] Isolation of an Acidophilic Cellulolytic Bacterial Strain and Its Cellulase Production Characteristics, Agriculture, 13, 1290
[34] Gimba, Y. A., Idris, A., Hassan, A. and Hassan, O. N. [2021] Isolation and optimization of the fermentation condition of cellulolytic microbial isolates from cassava waste water, GSC Biological and Pharmaceutical Sciences, 14[01], 011–017.
[35] Li, H., Dou, M. Wang , X., Ping Kou , N., Jiao, J. and Fu, Y. [2021] Optimization of Cellulase Production by a Novel Endophytic Fungus Penicillium oxalicum R4 Isolated from Taxus cuspidate Sustainability, 13, 6006.
[36] Bai, S M., kumar, R., D.J. Mukesh kumar, P. Balashanmugam, M.D. Bala kumaran, P.T. Kalaichelvan [2012] Cellulase Production by Bacillus subtilis isolated from Cow Dung Archives of Applied Science Research, 4 [1]:269-279.
[37] Chantarasiri, A. [2020] Diversity of cellulolytic bacteria isolated from a freshwater wetland reserve in Thailand and their cellulolytic activity, Applied Ecology and Environmental Research 18[4]:5965-5983.
[38] Hossain, Md., Ahammed, A., Sobuj, I.S., Shifat, S.K. and Somadder P. D. [2021] Cellulase Producing Bacteria Isolation, Screening and Media Optimization from Local Soil Sample American Journal of Microbiological Research,[9] 3, 62-74.
[39] Faizah, M. Ardyati, T. and, Suharjono [2020] Isolation and Identification of Indigenous Cellulolytic Bacteria from Sago Pith Waste at Palopo, South Sulawesi, Indonesia, J.Exp. Life Sci. 10[2].
[40] Vimal, J., Venu, A. and Joseph, J [2016] Isolation and identification of cellulose degrading bacteria and optimization of the cellulase production, International Journal of Research in Biosciences, [5] 3 [58-67].
[41] Shanmugapriya, K., Saravana, P.S., Krishnapriya, Manoharan, M.Mythili1, A, AND Joseph, S. [2012]. isolation, screening and partial purification of cellulase from cellulase producing bacteria, International Journal of Advanced Biotechnology and Research, [3], 1, pp 509-514.
[42] Lugani, Y., Singla, R. and Sooch, B.S. [2015] Optimization of Cellulase Production from Newly Isolated Bacillus sp. Y3, Journal of Bioprocessing & Biotechniques, [5], [11].
[43] Ariffin, H., Abdullah, N., Kalsom, M.S., Shirai, Y. and Hassan, M.A. [2006]. production and characterisation of cellulase by bacillus pumilus eb3, International Journal of Engineering and Technology, Vol [3] 1, pp. 47-53.
[44] Hayek, S.A.; Gyawali, R.; Aljaloud, S.O.; Krastanov, A.; Ibrahim, S.A. Cultivation media for lactic acid bacteria used in dairy products. J. Dairy Res. 2019, 86, 490–502.