افزایش خواص عملکردی و فعالیت آنتی اکسیدانی ایزوله پروتئین غلاف Prosopis juliflora از طریق تنظیم pH، همزمان با ارزیابی ویژگی‌های فیزیکوشیمیایی و فعالیت بازدارندگی ضد باکتریایی

نویسندگان
1 دانشگاه بصره
2 دانشگاه تهران
چکیده
در این مطالعه ویژگی­های فیزیکوشیمیایی غلاف Prosopis juliflora و تهیه ایزوله پروتئین آن مورد ارزیابی قرار گرفت. تغییرات در خواص عملکردی زمانی مشاهده شد که سطوح pH به 5، 7، 8 و 10 تنظیم شد، با تفاوت‌های معنی‌دار (P≤ 0.05) در ویژگی­های عملکردی و فعالیت‌های آنتی‌اکسیدانی و ضد باکتریایی. مقدار بالای حلالیت در 5pH و اتصال لیپید در 10pH به دست آمد، در حالی که کمترین مقدار برای هر دو ویژگی در 7 pH یافت شد. بیشترین ظرفیت کف­کنندگی در 5pH پس از 5 دقیقه همزدن مشاهده شد، اما پس از 1 دقیقه در 8 pH کاهش یافت. ظرفیت امولسیون‌سازی در 10pH بیشترین و در7 pH کمترین بود. فعالیت مهار رادیکال DPPH در 5pH بالا بود، اما در 8pH کاهش یافت و همچنین ایزوله پروتئین فعالیت مهاری را در برابر اشریشیاکلی، باسیلوس­سوبتیلیس و استافیلوکوکوس­اورئوس نشان داد. با این حال، بیشترین بازدارندگی در برابر باکتری باسیلوس سوبتلیس در غلظت پروتئین ایزوله 5/0 درصد بود، در حالی که قابلیت هضم پروتئین بالاتر بود. پروتئین ایزوله شده هیچ اثر سمی قابل توجهی بر سلول های خونی انسان نداشت. علاوه بر این، از آزمون FTIR برای تعیین ساختار پروتئین استفاده شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Enhancing functional characteristics and antioxidant activity of Prosopis juliflora pods' protein isolate through pH adjustment, while detecting the physicochemical properties and antibacterial inhibition activity

نویسندگان English

Alia Ziara Hashim 1
Faleeha Hasan Hussein 1
Ehsan Divan Khosroshahi 2
Hadi Razavi 2
1 University of Basrah
2 University of Tehran
چکیده English

This study evaluated the physicochemical properties of Prosopis juliflora pods and the preparation of its protein isolate. Changes in functional properties were observed when pH levels were adjusted to 5, 7, 8, and 10, with significant differences (P≤ 0.05) in functional characteristics and antioxidant and antibacterial activities. A high solubility value was achieved at pH 5.10 and lipid binding at pH 10, while the lowest value for both properties was found at pH 7. The highest foaming capacity was observed at pH 5 after 5 minutes of whipping, but decreased after 1 minute at pH 8. The emulsifying capacity was greatest at pH 10 and lowest at pH 7. The DPPH radical scavenging activity was high at pH 5, but decreased at pH 8 and also protein isolate showed inhibition activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus. However, the highest inhibition was against Bacillus bacteria at 0.5% protein isolate concentration, while the protein digestibility was higher. The isolated protein had no noticeable cytotoxic effect on human blood cells. Besides, FTIR test was used to determine the structure of the protein.

کلیدواژه‌ها English

Prosopis juliflora
Protein isolate
Physicochemical properties
functional characteristics
Algadi, M. Z., & Yousif, N. E. (2017). Protein Fractionation and In Vitro Protein Digestibility of Green Leaves of Cas-sia Obtusifolia and Kawal. Nutrition and Food Toxicology, 1, 106-110.‏
AOAC, 2000. American Association of Official Analytical Chemists. In: Official methods of analysis of The American Association of Official Analytical Chemists. Gaithersburg, USA, p. 2000.
Barbi, R. C. T., Hornung, P. S., Ávila, S., Alves, F. E. D. S. B., Beta, T., & Ribani, R. H. (2020). Ripe and unripe inajá (Maximilia maripa) fruit: A new high source of added value bioactive compounds. Food chemistry, 331, 127333.‏doi:10.1016/j.foodchem.2020.127333.
Batista, R., Santana, C. C., Azevedo-Santos, A. V., Suarez-Fontes, A. M., Ferraz, J. L. D. A. A., Silva, L. A. M., & Vannier-Santos, M. A. (2018). In vivo antimalarial extracts and constituents of Prosopis juliflora (Fabaceae). Journal of Functional Foods, 44, 74-78.‏ doi: 10.1016/j.jff.2018.02.032 .
Burgos‐Díaz, C., Piornos, J. A., Wandersleben, T., Ogura, T., Hernández, X., & Rubilar, M. (2016). Emulsifying and foaming properties of different protein fractions obtained from a novel lupin variety AluProt‐CGNA®(Lupinus luteus). Journal of food science, 81(7), C1699-C1706.‏
Cavalcante, A. M. D. M., Silva, O. S. D., Neto, G. J. D. S., Melo, A. M. D., & Ribeiro, N. L. (2019). Evaluation of the antioxidant potential of Mesquite grains flour in hamburger meat product. Journal of Experimental Agriculture International, 41(3), 1-14.‏ doi: 10.9734/jeai/2019/v41i330399 .
Cavalcante, A.M., de, M., Almeida, R.D., Melo, A.M., Morais, B.A., Silva, I.R., Ribeiro, N.L., & Silva, O.S., 2020. Modelos de predição da cinética de secagem dos grãos da algaroba. Brazilian Journal of Development 6 (3), 11192–11209. doi: 10.34117/bjdv6n3-113 .
Cavalcante, Atacy Maciel de Melo, Melo, Anely Maciel, Almeida, Francisco Lucas Chaves, Diniz, Natasha Carolina Melo, Luna, Laís Costa, Silva, Gledson Firmino, Santos, Edi- layane da Nóbrega, Sousa, Thamyres Cesar de Albuquerque, Ribeiro, Neila Lidiany, Silva, Osvaldo Soares, (2022). Mesquite (Prosopis juliflora) grain flour: New ingredient with bioactive, nutritional and physical-chemical properties for food applications. Future Foods. journal homepage. 5, 2022, 100114, pp. 1-9.
Chen, Y., Chen, J., Chang, C., Chen, J., Cao, F., Zhao, J. & Zhu, J. (2019). Physicochemical and functional properties of proteins extracted from three microalgal species. Food Hydrocolloids, 96, 510-517.‏
de Melo, A. M., Almeida, F. L. C., de Melo Cavalcante, A. M., Ikeda, M., Barbi, R. C. T., Costa, B. P., & Ribani, R. H. (2021). Garcinia brasiliensis fruits and its by-products: Antioxidant activity, health effects and future food industry trends–A bibliometric review. Trends in Food Science & Technology, 112, 325-335.‏. doi: 10.1016/j.tifs.2021.04.005.
De Oliveira, A. G., Murate, L. S., Spago, F. R., de Paula Lopes, L., de Oliveira Beranger, J. P., San Martin, J. A. B., ... & Andrade, G. (2011). Evaluation of the antibiotic activity of extracellular compounds produced by the Pseudomonas strain against the Xanthomonas citri pv. citri 306 strain. Biological Control, 56(2), 125-131.
Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X. & Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food hydrocolloids, 76, 131-140.‏
Feyzi, S., Varidi, M., Zare, F., & Varidi, M. J. (2015). Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties. Journal of the Science of Food and Agriculture, 95(15), 3165-3176.
Feyzi, S., Varidi, M., Zare, F., & Varidi, M. J. (2015). Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties. Journal of the Science of Food and Agriculture, 95(15), 3165-3176.‏
Gonzales-Barron, U., Dijkshoorn, R., Maloncy, M., Finimundy, T., Carocho, M., Ferreira, I. C., ... & Cadavez, V. (2020). Nutritional quality and staling of wheat bread partially replaced with Peruvian mesquite (Prosopis pallida) flour. Food Research International, 137, 109621.. doi: 10.1016/j.foodres.2020.109621 .
Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., & Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in biotechnology, 30(11), 591-600.‏. [CrossRef] [PubMed].
Gusmão, R. P. D., Gusmão, T. A. S., Moura, H. V., Duarte, M. E. M., & Cavalcanti-Mata, M. E. R. M. (2018). Caracterização tecnológica de cookies produzidos com diferentes concentrações de farinha de algaroba durante armazenamento por 120 dias. Brazilian Journal of Food Technology, 21, e2017116.‏. doi: 10.1590/1981-6723.11617 .
Iglesias, M. J., & Alejandre, A. P. (2010). Alimentos saludables y de diseño específico. Alimen-tos funcionales.‏
Jalalvand, A. R., Zhaleh, M., Goorani, S., Zangeneh, M. M., Seydi, N., Zangeneh, A., & Moradi, R. (2019). Chemical characterization and antioxidant, cytotoxic, antibacterial, and antifungal properties of ethanolic extract of Allium Saralicum RM Fritsch leaves rich in linolenic acid, methyl ester. Journal of Photochemistry and Photobiology B: Biology, 192, 103-112.‏. http://dx.doi.org/10.1016/j.jphotobiol.2019.01.017. PMid:30731424. تثبیط
Jovanovic, S. V., Steenken, S., Tosic, M., Marjanovic, B., & Simic, M. G. (1994). Flavonoids as antioxidants. Journal of the American Chemical Society, 116(11), 4846-4851.‏doi: 10.1021/ja00090a032. [CrossRef] [Google Scholar]
Khan, L. H., & Varshney, V. K. (2018). Chemical utilization of Albizia lebbeck Leaves for developing protein concentrates as a dietary supplement. Journal of Dietary Supplements, 15(4), 386-397.‏
Kumar, K. S., Ganesan, K., Selvaraj, K., & Rao, P. S. (2014). Studies on the functional properties of protein concentrate of Kappaphycus alvarezii (Doty) Doty–An edible seaweed. Food chemistry, 153, 353-360.‏
Lamsal, B. P., Koegel, R. G., & Gunasekaran, S. (2007). Some physicochemical and functional properties of alfalfa soluble leaf proteins. LWT-Food Science and Technology, 40(9), 1520-1526.
Lawal, O. S. (2004). Functionality of African locust bean (Parkia biglobossa) protein isolate: effects of pH, ionic strength and various protein concentrations. Food Chemistry, 86(3), 345-355.‏
Levin, S., & Grushka, E. (1985). Reversed-phase liquid chromatographic separation of amino acids with aqueous mobile phases containing copper ions and alkylsulfonates. Analytical Chemistry, 57(9), 1830-1835.‏ https://doi.org/10.1021/ac00286a011
Lin, Y., An, F., He, H., Geng, F., Song, H., & Huang, Q. (2021). Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocolloids, 114, 106555.‏
Liu, X., Wang, J., Liu, L., Cheng, L., Huang, Q., Wu, D., ... & Geng, F. (2021). Quantitative N-glycoproteomic analyses provide insights into the effects of thermal processes on egg white functional properties. Food Chemistry, 342, 128252.‏ .
Mariod, A. A., Fathy, S. F., & Ismail, M. (2010). Preparation and characterisation of protein concentrates from defatted kenaf seed. Food Chemistry, 123(3), 747-752.‏
Mune Mune, M. A., Bakwo Bassogog, C. B., Nyobe, E. C., & René Minka, S. R. (2016). Physicochemical and functional properties of Moringa oleifera seed and leaf flour. Cogent Food & Agriculture, 2(1), 1220352.‏
Mwamatope, B., Chikowe, I., Tembo, D. T., Kamanula, J. F., Masumbu, F. F., & Kumwenda, F. D. (2023). Phytochemical composition and antioxidant activity of edible wild fruits from malawi. BioMed Research International, 2023(1), 2621434.‏
Nair, M. G., Putnam, A. R., Mishra, S. K., Mulks, M. H., Taft, W. H., Keller, J. E., ... & Lynn, D. G. (1989). Faeriefungin: a new board-spectrum antibiotic from streptomyces griseus var. autotrophicus. Journal of natural products, 52(4), 797-809.‏
Nugrahani, I., Oktaviary, R., Ibrahim, S., Gusdinar, T., & Apsari, C. (2020). FTIR Method for Peptide Content Estimation and Degradation Kinetic Study of Canarium Nut Protein. Indonesian Journal of Pharmacy, 31(2), 78-83.‏ DOI:10.14499/indonesianjpharm31iss2pp78indonesianjpharm.farmasi.ugm.ac.id.
Sathe, S. K., Deshpande, S. S., & Salunkhe, D. K. (1982). Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. Journal of food science, 47(2), 491-497.‏
Seena, S., & Sridhar, K. R. (2005). Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Research International, 38(7), 803-814.‏
Shahid, M. Z., Saima, H., Yasmin, A., Nadeem, M. T., Imran, M., & Afzaal, M. (2018). Antioxidant capacity of cinnamon extract for palm oil stability. Lipids in health and disease, 17, 1-8.‏ https://doi.org/10.1186/s12944-018-0756-y.
Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of agricultural and food chemistry, 51(8), 2144-2155.‏
Siddiqui, N., Rauf, A., Latif, A., & Mahmood, Z. (2017). Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). Journal of Taibah university medical sciences, 12(4), 360-363.‏, https://doi.org/10.1016/j.jtumed.2016.11.006.
Tiwari, B. K., & Singh, N. (2012). Pulse chemistry and technology. Royal Society of Chemistry.‏
Wang, X., Gao, W., Zhang, J., Zhang, H., Li, J., He, X., & Ma, H. (2010). Subunit, amino acid composition and in vitro digestibility of protein isolates from Chinese kabuli and desi chickpea (Cicer arietinum L.) cultivars. Food Research International, 43(2), 567-572.‏
Wasswa, J., Tang, J., Gu, X. H., & Yuan, X. Q. (2007). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chemistry, 104(4), 1698-1704.‏
You, L., Zhao, M., Cui, C., Zhao, H., & Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative food science & emerging technologies, 10(2), 235-240.‏. https://doi.org/10.1016/j. ifset.2008.08.007.
Yuliana, M., Truong, C. T., Huynh, L. H., Ho, Q. P., & Ju, Y. H. (2014). Isolation and characterization of protein isolated from defatted cashew nut shell: Influence of pH and NaCl on solubility and functional properties. LWT-Food Science and Technology, 55(2), 621-626.