پردازش تصویر فیلم موسیلاژ دانه چیا حاوی نانوامولسیون اسانس دارچین

نویسندگان
1 استادیار بخش آمار دانشگاه فسا
2 اسنادیار دانشگاه علوم پزشکی فسا
3 دانشیار مهندسی علوم و صنایع غذایی دانشگاه فسا
4 تربیت مدرس تهران
چکیده



1: Scanning electron microscopy

2: Atomic Force Microscopy

تصویربرداری ابزاری مهم برای ارزیابی ساختار مواد غذایی است. پردازش تصویر شامل تصاویر دو بعدی (2D) از سطوح و مقاطع، مانند آنچه در میکروسکوپ مشاهده می‌شود و همچنین تصاویر سه‌بعدی (3D) از ساختار داخلی، مانند آنچه توسط میکروسکوپ کانفوکال، توموگرافی کامپیوتری و تصویربرداری تشدید مغناطیسی می‌باشد. در این تحقیق از پردازش تصاویر برای تعیین سختی و فشردگی بیو فیلم‌های خوراکی آغشته به نانواملسیون به کار رفت. فیلم خوراکی ترکیبی صمغ عربی-ژلاتین (PG) (1:1) حاوی اسانس آویشن (Zataria multiflora Boiss) با امولسیون پیکرنگ (1 و 4 گرم در 100 گرم) تهیه شد. تصاویر میکروسکوپ الکترونی روبشی[1] و میکروسکوپ نیروی اتمی[2] از فیلم‌ها تهیه شد. نتایج AFM و پردازش تصویر نشان دادند که با افزایش میزان اسانس میزان فشردگی کاهش و زبری سطح افزایش پیدا می‌کند که با نتایج پردازش تصاویر مطابقت داشت.



1: Scanning electron microscopy

2: Atomic Force Microscopy
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Image processing of chia seed mucilage film containing cinnamon essential oil nanoemulsion

نویسندگان English

Behnam Amiri 1
Mehran Sayadi 2
Elahe Abedi 3
Mohammad Amin Jafari 4
1 Assistant Professor, Department of Statistics, Faculty of Science, Fasa University, Fasa, Iran
2 Department of Food Safety and Hygiene, Faculty of Health, Fasa University of Medical Sciences, Fasa, Iran
3 Associate professor in food science and technology, Fasa university
4 Tarbiat Modares Tehran
چکیده English

Image processing is an essential tool to evaluate food structure. Image processing includes two-dimensional (2D) images of surfaces and sections, such as those seen under a microscope, and three-dimensional (3D) images of internal structures, such as those obtained by confocal microscopy, computed tomography, and magnetic resonance imaging. This research used image processing to determine the hardness and compressibility of edible biofilms impregnated with nanoemulsion. Gum arabic-gelatin (PG) (1:1) edible film containing thyme essential oil (Zataria multiflora Boiss) was prepared with Pickering emulsion (1 and 4 g/100 g). Scanning electron microscope and atomic force microscope images were prepared from the films. The AFM and image analysis results showed that increasing the essential oil decreases the compression rate and the surface roughness increases.

کلیدواژه‌ها English

Image processing
Scanning electron microscopy
Atomic force microscope
Compressibility of edible biofilms
Chia gums
[1] Mellinas, Cristina, et al. "Active edible films: Current state and future trends." Journal of Applied Polymer Science 133.2 (2016).
[2] Erginkaya, Z., Kalkan, S., & Ünal, E. (2014). Use of antimicrobial edible films and coatings as packaging materials for food safety. In Food processing: Strategies for quality assessment (pp. 261-295). New York, NY: Springer New York.
[3] Jiang, Changxing, Qingping Xiong, Dan Gan, Yunpeng Jiao, Jing Liu, Liping Ma, and Xiaoxiong Zeng. "Antioxidant activity and potential hepatoprotective effect of polysaccharides from Cyclina sinensis." Carbohydrate Polymers 91, no. 1 (2013): 262-268.
[4] Ritchie, H., Roser, M., & Rosado, P. (2020). CO₂ and greenhouse gas emissions. Our world in data.
[5] Espitia, P. J. P., Du, W. X., de Jesús Avena-Bustillos, R., Soares, N. D. F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties-A review. Food hydrocolloids, 35, 287-296.
[6] Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate polymers, 238, 116178.
[7] Nazir, S., Wani, I. A., & Masoodi, F. A. (2017). Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology. Journal of Advanced Research, 8(3), 235-244.
[8] Gaba, A. B. M., Hassan, M. A., Abd EL-Tawab, A. A., Abdelmonem, M. A., & Morsy, M. K. (2022). Protective impact of chitosan film loaded oregano and thyme essential oil on the microbial profile and quality attributes of beef meat. Antibiotics, 11(5), 583.
[9] Alves, V. D., Costa, N., & Coelhoso, I. M. (2010). Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrate Polymers, 79(2), 269-276.
[10 Luo, M., Cao, Y., Wang, W., Chen, X., Cai, J., Wang, L., & Xiao, J. (2019). Sustained-release antimicrobial gelatin film: Effect of chia mucilage on physicochemical and antimicrobial properties. Food Hydrocolloids, 87, 783-791.
[11] Emir Çoban, Ö., & Ergür, N. (2021). Chia musilage coating: Applications with gojiberry extract for shelf life extension of Oncorhynchus mykiss and it's antibacterial and oxidative effects. Journal of Food Processing and Preservation, 45(2), e15114.
[12] Mousavi, S. R., Rahmati-Joneidabad, M., & Noshad, M. (2021). Effect of chia seed mucilage/bacterial cellulose edible coating on bioactive compounds and antioxidant activity of strawberries during cold storage. International Journal of Biological Macromolecules, 190, 618-623.
[13] Semwal, A., Ambatipudi, K., & Navani, N. K. (2022). Development and characterization of sodium caseinate based probiotic edible film with chia mucilage as a protectant for the safe delivery of probiotics in functional bakery. Food Hydrocolloids for Health, 2, 100065.
[14] Muñoz-Tébar, N., Carmona, M., Ortiz de Elguea-Culebras, G., Molina, A., & Berruga, M. I. (2022). Chia seed mucilage edible films with origanum vulgare and satureja montana essential oils: characterization and antifungal properties. Membranes, 12(2), 213.
[15] Shishebor, Z., & Amiri Aghbilagh, B. (2019). On the asymptotic behavior of the periodograms of periodically correlated spatial processes: Periodicity detection. Communications in Statistics-Theory and Methods, 48(8), 1854-1870.
[16] Dammak, I., Lourenço, R. V., & do Amaral Sobral, P. J. (2019). Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin: Preparation and physicochemical characterization. Journal of Food Engineering, 240, 9-20.
[17] Khodaei, D., Oltrogge, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. Lwt, 117, 108617.
[18] Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680.
[19] Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338
[20] Sun, H., Li, S., Chen, S., Wang, C., Liu, D., & Li, X. (2020). Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules, 159, 696-703.
[21] Shen, Y., Ni, Z.-J., Thakur, K., Zhang, J.-G., Hu, F., & Wei, Z.-J. (2021). Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. International Journal of Biological Macromolecules, 181, 528-539.

[1] Mellinas, Cristina, et al. "Active edible films: Current state and future trends." Journal of Applied Polymer Science 133.2 (2016).
[2] Erginkaya, Z., Kalkan, S., & Ünal, E. (2014). Use of antimicrobial edible films and coatings as packaging materials for food safety. In Food processing: Strategies for quality assessment (pp. 261-295). New York, NY: Springer New York.
[3] Jiang, Changxing, Qingping Xiong, Dan Gan, Yunpeng Jiao, Jing Liu, Liping Ma, and Xiaoxiong Zeng. "Antioxidant activity and potential hepatoprotective effect of polysaccharides from Cyclina sinensis." Carbohydrate Polymers 91, no. 1 (2013): 262-268.
[4] Ritchie, H., Roser, M., & Rosado, P. (2020). CO₂ and greenhouse gas emissions. Our world in data.
[5] Espitia, P. J. P., Du, W. X., de Jesús Avena-Bustillos, R., Soares, N. D. F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties-A review. Food hydrocolloids, 35, 287-296.
[6] Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate polymers, 238, 116178.
[7] Nazir, S., Wani, I. A., & Masoodi, F. A. (2017). Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology. Journal of Advanced Research, 8(3), 235-244.
[8] Gaba, A. B. M., Hassan, M. A., Abd EL-Tawab, A. A., Abdelmonem, M. A., & Morsy, M. K. (2022). Protective impact of chitosan film loaded oregano and thyme essential oil on the microbial profile and quality attributes of beef meat. Antibiotics, 11(5), 583.
[9] Alves, V. D., Costa, N., & Coelhoso, I. M. (2010). Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrate Polymers, 79(2), 269-276.
[10 Luo, M., Cao, Y., Wang, W., Chen, X., Cai, J., Wang, L., & Xiao, J. (2019). Sustained-release antimicrobial gelatin film: Effect of chia mucilage on physicochemical and antimicrobial properties. Food Hydrocolloids, 87, 783-791.
[11] Emir Çoban, Ö., & Ergür, N. (2021). Chia musilage coating: Applications with gojiberry extract for shelf life extension of Oncorhynchus mykiss and it's antibacterial and oxidative effects. Journal of Food Processing and Preservation, 45(2), e15114.
[12] Mousavi, S. R., Rahmati-Joneidabad, M., & Noshad, M. (2021). Effect of chia seed mucilage/bacterial cellulose edible coating on bioactive compounds and antioxidant activity of strawberries during cold storage. International Journal of Biological Macromolecules, 190, 618-623.
[13] Semwal, A., Ambatipudi, K., & Navani, N. K. (2022). Development and characterization of sodium caseinate based probiotic edible film with chia mucilage as a protectant for the safe delivery of probiotics in functional bakery. Food Hydrocolloids for Health, 2, 100065.
[14] Muñoz-Tébar, N., Carmona, M., Ortiz de Elguea-Culebras, G., Molina, A., & Berruga, M. I. (2022). Chia seed mucilage edible films with origanum vulgare and satureja montana essential oils: characterization and antifungal properties. Membranes, 12(2), 213.
[15] Shishebor, Z., & Amiri Aghbilagh, B. (2019). On the asymptotic behavior of the periodograms of periodically correlated spatial processes: Periodicity detection. Communications in Statistics-Theory and Methods, 48(8), 1854-1870.
[16] Dammak, I., Lourenço, R. V., & do Amaral Sobral, P. J. (2019). Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin: Preparation and physicochemical characterization. Journal of Food Engineering, 240, 9-20.
[17] Khodaei, D., Oltrogge, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. Lwt, 117, 108617.
[18] Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680.
[19] Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338
[20] Sun, H., Li, S., Chen, S., Wang, C., Liu, D., & Li, X. (2020). Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules, 159, 696-703.
[21] Shen, Y., Ni, Z.-J., Thakur, K., Zhang, J.-G., Hu, F., & Wei, Z.-J. (2021). Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. International Journal of Biological Macromolecules, 181, 528-539.



[1] Mellinas, Cristina, et al. "Active edible films: Current state and future trends." Journal of Applied Polymer Science 133.2 (2016).
[2] Erginkaya, Z., Kalkan, S., & Ünal, E. (2014). Use of antimicrobial edible films and coatings as packaging materials for food safety. In Food processing: Strategies for quality assessment (pp. 261-295). New York, NY: Springer New York.
[3] Jiang, Changxing, Qingping Xiong, Dan Gan, Yunpeng Jiao, Jing Liu, Liping Ma, and Xiaoxiong Zeng. "Antioxidant activity and potential hepatoprotective effect of polysaccharides from Cyclina sinensis." Carbohydrate Polymers 91, no. 1 (2013): 262-268.
[4] Ritchie, H., Roser, M., & Rosado, P. (2020). CO₂ and greenhouse gas emissions. Our world in data.
[5] Espitia, P. J. P., Du, W. X., de Jesús Avena-Bustillos, R., Soares, N. D. F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties-A review. Food hydrocolloids, 35, 287-296.
[6] Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate polymers, 238, 116178.
[7] Nazir, S., Wani, I. A., & Masoodi, F. A. (2017). Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology. Journal of Advanced Research, 8(3), 235-244.
[8] Gaba, A. B. M., Hassan, M. A., Abd EL-Tawab, A. A., Abdelmonem, M. A., & Morsy, M. K. (2022). Protective impact of chitosan film loaded oregano and thyme essential oil on the microbial profile and quality attributes of beef meat. Antibiotics, 11(5), 583.
[9] Alves, V. D., Costa, N., & Coelhoso, I. M. (2010). Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrate Polymers, 79(2), 269-276.
[10 Luo, M., Cao, Y., Wang, W., Chen, X., Cai, J., Wang, L., & Xiao, J. (2019). Sustained-release antimicrobial gelatin film: Effect of chia mucilage on physicochemical and antimicrobial properties. Food Hydrocolloids, 87, 783-791.
[11] Emir Çoban, Ö., & Ergür, N. (2021). Chia musilage coating: Applications with gojiberry extract for shelf life extension of Oncorhynchus mykiss and it's antibacterial and oxidative effects. Journal of Food Processing and Preservation, 45(2), e15114.
[12] Mousavi, S. R., Rahmati-Joneidabad, M., & Noshad, M. (2021). Effect of chia seed mucilage/bacterial cellulose edible coating on bioactive compounds and antioxidant activity of strawberries during cold storage. International Journal of Biological Macromolecules, 190, 618-623.
[13] Semwal, A., Ambatipudi, K., & Navani, N. K. (2022). Development and characterization of sodium caseinate based probiotic edible film with chia mucilage as a protectant for the safe delivery of probiotics in functional bakery. Food Hydrocolloids for Health, 2, 100065.
[14] Muñoz-Tébar, N., Carmona, M., Ortiz de Elguea-Culebras, G., Molina, A., & Berruga, M. I. (2022). Chia seed mucilage edible films with origanum vulgare and satureja montana essential oils: characterization and antifungal properties. Membranes, 12(2), 213.
[15] Shishebor, Z., & Amiri Aghbilagh, B. (2019). On the asymptotic behavior of the periodograms of periodically correlated spatial processes: Periodicity detection. Communications in Statistics-Theory and Methods, 48(8), 1854-1870.
[16] Dammak, I., Lourenço, R. V., & do Amaral Sobral, P. J. (2019). Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin: Preparation and physicochemical characterization. Journal of Food Engineering, 240, 9-20.
[17] Khodaei, D., Oltrogge, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. Lwt, 117, 108617.
[18] Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680.
[19] Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338
[20] Sun, H., Li, S., Chen, S., Wang, C., Liu, D., & Li, X. (2020). Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules, 159, 696-703.
[21] Shen, Y., Ni, Z.-J., Thakur, K., Zhang, J.-G., Hu, F., & Wei, Z.-J. (2021). Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. International Journal of Biological Macromolecules, 181, 528-539.