بهینه سازی فرایند ریزپوشانی کانتا گزانتین به روش الکترواسپری

نویسندگان
1 دانش آموخته دکتری گروه علوم و صنایع غذایی دانشکده علوم و فنون دریایی دانشگاه آزاد تهران شمال
2 استاد گروه علوم و صنایع غذایی دانشکده کشاورزی دانشگاه تربیت مدرس
3 استاد گروه علوم و صنایع غذایی دانشکده علوم و فنون دریایی دانشگاه آزاد تهران شمال
4 دانشیار گروه نساجی دانشکده نساجی دانشگاه امیرکبیر
5 استادیار گروه علوم و صنایع غذایی دانشکده علوم و فنون دریایی دانشگاه آزاد تهران شمال
چکیده
ﮐﺎﻧﺘﺎﮔﺰاﻧﺘﯿﻦ مولکول کتوکاروتنوئید ﻏﯿﺮاﺷﺒﺎع ﺑﻮده ﮐﻪ ﻧﺴﺒﺖ ﺑﻪ ﻋﻮاﻣﻞ ﻣﺤﯿﻄﯽ ﺣﺴﺎس اﺳﺖ. توسعه میکرو-نانو کپسولاسیون یکی از راهکار­هایی است که ترکیبات زیست فعال را در برابر شرایط نامناسب محیطی محافظت می­کند. در این مطالعه کانتاگزانتین با استفاده از پلیمر پروتئین آب پنیر با روش الکترواسپری ریزپوشانی شدند و با استفاده روش سطح پاسخ تاثیر چهار متغیر مستقل غلظت پروتئین آب پنیر، ولتاژ به کار رفته، نرخ ورودی و فاصله سر سرنگ و جمع کننده بر روی کارایی الکترواسپری کانتاگزانتین ارزیابی شد. بر اساس نتایج به دست آمده توابع مطلوبیت بیشترین مطلوبیت با مقدار 93/0 در غلظت پروتئین آب پنیر 4/39%، ولتاژkV 5/17، نرخ ورودی 2/2 mL/h ، فاصله سرسرنگ و جمع کننده cm1/17 تعیین شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Microencapsulation of canthaxanthine with electrospray and optimizaing processing papameters toward efficiency encapsulation by response surface methodology

نویسندگان English

fatemeh karimi 1
MohammadHossein Azizi 2
SOHRAB MOEINI 3
Mohammad Karimi 4
Roxana Moogouei 5
1 Department of Food Science and Technology, Islamic Azad University North Tehran branch,Tehran, Iran
2 Department of food science and Technology, Tarbiat Modares university, Tehran, Iran
3 .Department of Food Science and Technology, Islamic Azad University North Tehran branch,Tehran, Iran
4 Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
5 Department of Enviromental planning, Management and Education, Islamic Azad University North Tehran Branch, Tehran, Iran
چکیده English

This study showed the potential of the electrospinning (in this case electrospraying) technique to produce whey protein concentrate (WPC) micro and nanocapsules for applications in the encapsulation of canthaxanthin. The results showed that the solution concentration, feed solution flow rate and applied voltage had a direct effect on the encapsulation efficiency. by increasing of the solution concentration, feed solution flow rate and applied voltage, the encapsulation efficiency increased. The results showed that solution concentration was the most effective factor in electrospraying, because its scale estimate was highest. According to the results of analysis of variance (ANOVA) for this model, the regression model suggested a significant value for both linear and quadratic terms at P < 0.05. Also in order to obtain 0.93% encapsulation efficiency, optimum point was found at the emulsion concentration of 39.4%, feed solution flow rate of 12.2 ml/min, applied voltage of 17.5 kV, and 17.1cm distance between needle tip and collector.

کلیدواژه‌ها English

Canthaxanthin
Encapsulation
Electrospraying
Whey protein
[1] Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A. and Nedović, V. 2014. Trends in encapsulation technologies for delivery of food bioactive compounds. Journal of Food Engineering Reviews 7: 452-490.
[2] Fortes, C., 2006. Carotenoids in cancer prevention in Carcinogenic food component. (Baer-Dubowska et al, eds). CRC Press, Boca Raton, pp: 123-137.
[3] DeMan, J.M. 1999. Principles of food Chemistry. Springer, New York, pp: 127-128
[4] Smith, J. and Hong- Shun, L., 2003. Food additive data book. Wiley-Blackwell, London, pp: 23-25.
[5] Otles, S. and Cagindi, O. 2008. Carotenoids as colorants. In Food colorants chemical and functional properties. (Socaciu, C, ed). CRC Press, Boca Raton, pp: 34-41.
[6] Fernandez, A., Torres-Giner, S. and Lagaron, J.M. 2009. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Journal of Food Hydrocolloid 23: 1427–32.
[7] Tachaprutinun, A., Udomsup, T., Luadthong, C. and Wanichwecharungruang, S. 2009. Preventing the thermal degradation of astaxanthin through nanoencapsulation. Journal of Pharmaceutics 374(1-2): 119-124
[8] Desobry, S.A., Netto, F.M., Labuza, T.B. 1997. Comparison of spray-drying, drum drying and freeze-drying for (1- 3, 1-4)-β- arotene encapsulation and preservation. Journal of Food Science 62: 1158–62.
[9] Khodaiyan, F., Razavi, SH and Mousavi, SM . 2008. Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 rom cheese whey using statistical experimental methods. Biochem Eng J 40:415–22.
[10] Wagner, L. A., Warthesen, J.J. 1995. Stability of spray-dried encapsulated carrot carotenes. Journal of Food Science 60(5): 1048-53.
[11] Castillo, E.D. 2007. Process optimization a statistical approach. Springer, New York, pp: 232.
[12] Luiz, C.C., Maria, L. and Margarida, M., Microencapsulation of 𝛽-Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. Journal of Food Science 51: 228-334.
[13] Rocha, G. A., F´avaro-Trindade, C.S. and Grosso, C.R.F. 2012. Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Journal of Food and Bioproducts Processing 90(1): 37–42.
[14] Islam Shishir, M.R., Taip, F.S., Aziz, N.A. 2016. Optimization of spray drying parameters for pink guava powder using RSM. Journal of Food Science and Biotechnology 25(2): 461–468.
[15] Lundstedt, T., Seifert, E. and Abramo, L., et al. 1998. Experimental design and optimization. Journal of Chemometrics and Intelligent Laboratory Systems 42(1-2): 3–40.
[16] Shenoy, S.L, Bates, W.D, Frisch, H.L, Wnek, G.E. 2005. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Journal of Polymer. 46(10): 3372-84.
[17] Ramakrishna, S., Fujihara, K., Teo, W-E., Lim, T-C., Ma, Z. 2005. An introduction to electrospinning and nanofibers. World Scientific, London, pp: 323-37.