[1]. Sahebkar, A., Hosseini, M., & Sharifan, A. (2020). Plasma-assisted preservation of breast chicken fillets in essential oils-containing marinades. Lwt, 131, 109759.
[2]. Mousavi, S. A., Nateghi, L., Javanmard Dakheli, M., Ramezan, Y., Piravi-Vanak, Z., Paidari, S., & Mohammadi Nafchi, A. (2022). Effects of incorporation of Chavir ultrasound and maceration extracts on the antioxidant activity and oxidative stability of ordinary virgin olive oil: identification of volatile organic compounds. Journal of Food Measurement and Characterization, 16(5), 4236-4250.
[3]. Azarashkan, Z., Motamedzadegan, A., Ghorbani‐HasanSaraei, A., Biparva, P., & Rahaiee, S. (2022). Investigation of the physicochemical, antioxidant, rheological, and sensory properties of ricotta cheese enriched with free and nano‐encapsulated broccoli sprout extract. Food Science & Nutrition, 10(11), 4059-4072.
[4]. Gunstone, F. D. (2013). Composition and properties of edible oils. Edible oil processing, 1-39.
[5]. Hamm, W., Hamilton, R. J., & Calliauw, G. (2013). Edible oil processing. Wiley Online Library.
[6]. Al-Asmar, A., Giosafatto, C. V. L., Panzella, L., & Mariniello, L. (2019). The effect of transglutaminase to improve the quality of either traditional or pectin-coated falafel (Fried Middle Eastern Food). Coatings, 9(5), 331.
[7]. Fikry, M., Khalifa, I., Sami, R., Khojah, E., Ismail, K. A., & Dabbour, M. (2021). Optimization of the frying temperature and time for preparation of healthy falafel using air frying technology. Foods, 10(11), 2567.
[8]. Raviv, Y. (2015). Falafel nation: Cuisine and the making of national identity in Israel. U of Nebraska Press.
[9]. Azarashkan, Z., Motamedzadegan, A., Ghorbani-HasanSaraei, A., Rahaiee, S., & Biparva, P. (2022). Improvement of the stability and release of sulforaphane-enriched broccoli sprout extract nanoliposomes by co-encapsulation into basil seed gum. Food and Bioprocess Technology, 15(7), 1573-1587.
[10]. Zabihpour, T., Shahidi, S., Karimi Maleh, H., & Ghorbani-HasanSaraei, A. (2020). MnFe2O4/1-Butyl-3-methylimidazolium hexafluorophosphate modified carbon paste electrode: an amplified food sensor for determination of gallic acid in the presence of ferulic acid as two phenolic antioxidants. Eurasian Chem. Commun, 2(3), 362-373.
[11]. Nezhad, H. M., Shahidi, S.-A., & Bijad, M. (2018). Fabrication of a nanostructure voltammetric sensor for carmoisine analysis as a food dye additive. Anal Bioanal Electrochem, 10, 220-229.
[12]. Sharafi, S., & Nateghi, L. (2020). Optimization of gamma-aminobutyric acid production by probiotic bacteria through response surface methodology. Iranian journal of microbiology, 12(6), 584.
[13]. Mohammadian, M., Moghaddam, A. D., Sharifan, A., Dabaghi, P., & Hadi, S. (2021). Structural, physico-mechanical, and bio-functional properties of whey protein isolate-based edible films as affected by enriching with nettle (Urtica dioica L.) leaf extract. Journal of Food Measurement and Characterization, 15(5), 4051-4060.
[14]. Gharehyakheh, S., Elhami Rad, A. H., Nateghi, L., & Varmira, K. (2019). Production of GABA‐enriched honey syrup using Lactobacillus bacteria isolated from honey bee stomach. Journal of food processing and preservation, 43(8), e14054.
[15]. Najjar-Tabrizi, R., Javadi, A., Sharifan, A., Chew, K. W., Lay, C.-H., Show, P. L., Jafarizadeh-Malmiri, H., & Berenjian, A. (2020). Hydrothermally extraction of saponin from Acanthophyllum glandulosum root–Physico-chemical characteristics and antibacterial activity evaluation. Biotechnology Reports, 27, e00507.
[16]. Bent, G.-A., Maragh, P., & Dasgupta, T. (2012). Acrylamide in Caribbean foods–residual levels and their relation to reducing sugar and asparagine content. Food Chemistry, 133(2), 451-457.
[17]. Razia, S., Bertrand, M., Klaus, V., & Meinolf, G. (2016). Investigation of acrylamide levels in branded biscuits, cakes and potato chips commonly consumed in Pakistan. International Food Research Journal, 23(5).
[18]. Cheng, K.-W., Zeng, X., Tang, Y. S., Wu, J.-J., Liu, Z., Sze, K.-H., Chu, I. K., Chen, F., & Wang, M. (2009). Inhibitory mechanism of naringenin against carcinogenic acrylamide formation and nonenzymatic browning in Maillard model reactions. Chemical research in toxicology, 22(8), 1483-1489.
[19]. Granby, K., Nielsen, N. J., Hedegaard, R. V., Christensen, T., Kann, M., & Skibsted, L. H. (2008). Acrylamide–asparagine relationship in baked/toasted wheat and rye breads. Food Additives and Contaminants, 25(8), 921-929.
[20]. Cheng, K.-W., Shi, J.-J., Ou, S.-Y., Wang, M., & Jiang, Y. (2010). Effects of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps. Journal of Agricultural and Food Chemistry, 58(1), 309-312.
[21]. Hedegaard, R. V., Granby, K., Frandsen, H., Thygesen, J., & Skibsted, L. H. (2008). Acrylamide in bread. Effect of prooxidants and antioxidants. European Food Research and Technology, 227, 519-525.
[22]. Rufian-Henares, J. A., Arribas-Lorenzo, G., & Morales, F. J. (2007). Acrylamide content of selected Spanish foods: survey of biscuits and bread derivatives. Food Additives and Contaminants, 24(4), 343-350.
[23]. Svensson, K., Abramsson, L., Becker, W., Glynn, A., Hellenäs, K.-E., Lind, Y., & Rosen, J. (2003). Dietary intake of acrylamide in Sweden. Food and Chemical Toxicology, 41(11), 1581-158.
[24]. EU, C. R. (2017). Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food, 2017/2158 of 20 November 2017. Official Journal of the European :union:. https://eur-lex.europa.eu/eli/reg/2017/2158/oj
[25]. Murkovic, M. (2004). Acrylamide in Austrian foods. Journal of Biochemical and Biophysical Methods, 61(1-2):161-67.
[26]. Abdi, R., Ghorbani-HasanSaraei, A., Karimi-Maleh, H., Raeisi, S. N., & Karimi, F. (2020). Determining caffeic acid in food samples using a voltammetric sensor amplified by Fe3O4 nanoparticles and room temperature ionic liquid. International Journal of Electrochemical Science, 15(3), 2539-2548.
[27]. Behrouzifar, F., Shahidi, S.-A., Chekin, F., Hosseini, S., & Ghorbani-HasanSaraei, A. (2021). Colorimetric assay based on horseradish peroxidase/reduced graphene oxide hybrid for sensitive detection of hydrogen peroxide in beverages. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 257, 119761.
[28]. Aghvami, M., Mohammadi, A., Khaniki, G. J., Ahmadi, M., Moazzen, M., Arabameri, M., & Shariatifar, N. (2023). Investigation of cocoa and cinnamon effect on acrylamide formation in cakes production using GC/MS method: A risk assessment study. Food Chemistry: X, 18, 100629.
[29]. Seilani, F., Shariatifar, N., Nazmara, S., Khaniki, G. J., Sadighara, P., & Arabameri, M. (2021). The analysis and probabilistic health risk assessment of acrylamide level in commercial nuggets samples marketed in Iran: effect of two different cooking methods. Journal of Environmental Health Science and Engineering, 19, 465-473.
[30]. Pedreschi, F., Kaack, K., & Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT-Food Science and Technology, 37(6), 679-685.
[31]. Matthäus, B., Haase, N. U., & Vosmann, K. (2004). Factors affecting the concentration of acrylamide during deep‐fat frying of potatoes. European Journal of Lipid Science and Technology, 106(11), 793-801.
[32]. Knol, J. J., Viklund, G. Å., Linssen, J. P., Sjöholm, I. M., Skog, K. I., & van Boekel, M. A. (2009). Kinetic modelling: A tool to predict the formation of acrylamide in potato crisps. Food Chemistry, 113(1), 103-109.
[33]. Williams, J. (2005). Influence of variety and processing conditions on acrylamide levels in fried potato crisps. Food Chemistry, 90(4), 875-881.
[34]. Romani, S., Bacchiocca, M., Rocculi, P., & Dalla Rosa, M. (2008). Effect of frying time on acrylamide content and quality aspects of French fries. European Food Research and Technology, 226, 555-560.
[35]. Biedermann, M., Grundböck, F., Fiselier, K., Biedermann, S., Bürgi, C., & Grob, K. (2010). Acrylamide monitoring in Switzerland, 2007–2009: results and conclusions. Food Additives and Contaminants, 27(10), 1352-1362.
[36]. El-Ziney, M., Al-Turki, A., & Tawfik, M. (2009). Acrylamide status in selected traditional saudi foods and infant milk and foods with estimation of daily exposure. American Journal of Food Technology, 4(5):177-91.
[37]. Pugajeva, I., Zumbure, L., Melngaile, A., & Bartkevics, V. (2014). Determination of acrylamide levels in selected foods in Latvia and assessment of the population intake. Foodbalt, 111-116.
[38]. Matthys, C., Bilau, M., Govaert, Y., Moons, E., De Henauw, S., & Willems, J. (2005). Risk assessment of dietary acrylamide intake in Flemish adolescents. Food and Chemical Toxicology, 43(2), 271-278.
[39]. Konings, E. J., Baars, A., van Klaveren, J. D., Spanjer, M., Rensen, P., Hiemstra, M., Van Kooij, J., & Peters, P. (2003). Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food and Chemical Toxicology, 41(11), 1569-1579.
[40]. Normandin, L., Bouchard, M., Ayotte, P., Blanchet, C., Becalski, A., Bonvalot, Y., Phaneuf, D., Lapointe, C., Gagné, M., & Courteau, M. (2013). Dietary exposure to acrylamide in adolescents from a Canadian urban center. Food and Chemical Toxicology; 57:75-83.
[41]. Boyaci Gunduz, C. P. (2023). Formulation and processing strategies to reduce acrylamide in thermally processed cereal-based foods. International Journal of Environmental Research and Public Health, 20(13), 6272.
[42]. Shahbazi, R., Adergani, B. A., Shariatifar, N., Jafari, K., Taheri, E., Fathabad, A. E., Saatloo, N. V., Aghaee, E. M., Sadighara, P., & Khaneghah, A. M. (2022). Assessment of food additives impact on acrylamide formation in popcorn supplied in Tehran, Iran: a risk assessment study. Carpathian Journal of Food Science & Technology, 14 (4)