مطالعه تولید نانو الیاف کامپوزیت از ترکیبات هیدروکلوئیدی دانه L. Salvia macrosiphon به روش الکتروریسی به منظور ریز پوشینه‌کردن ویتامین D3

نویسندگان
دانشگاه آزاد اسلامی واحد کازرون
چکیده
پیشرفت در فرآیندهای تولید نانوساختارها با خصوصیات فرمولی مناسب، تولید نانوذرات پایدار با قابلیت کاربرد در صنعت غذا را فراهم می‌سازد. می­توان ترکیبات زیست فعال ریزپوشانی شده را در فیبرهای الکتروریسی ادغام کرد تا پایداری بیشتر نانوذرات در برابر حرارت و نور که منجر به افزایش زمان نگهداری است، محقق شود. در مطالعه حاضر، لایه‌های نانوالیاف کامپوزیتی از موسیلاژ استخراجی از دانه L. Salvia macrosiphon با استفاده از الکتروریسی ساخته شدند. نانو­کامپوزیت نانو­الیاف از پلی وینیل الکل/ ایزوله پروتئین سبوس برنج / موسیلاژ دانهL. Salvia macrosiphon در نسبت­­های مختلف آماده شد. سپس مورفولوژی و طیف سنجی FTIR مورد بررسی قرار گرفت. متوسط قطر نانوالیاف تولیدی حدود 40 نانومتر و ضریب واریانس 13٪ است، که نشان داد قطر الیاف نسبتاً یکنواخت است. افزایش غلظت محلول موسیلاژ و درصد ثابت پلی‌وینیل الکل باعث افزایش قطر نانوالیاف به طرز قابل توجهی شد. در مرحله بعد، ویتامین D3 درون نانوالیاف پلی­ونیل­الکل و کنسانتره پروتئین سبوس برنج کپسوله شد. نتایج FTIR وجود ویتامین D3 را در نانوالیاف تهیه شده تایید کرد. در غلظت­های بالاتر ترکیبات فنلی، با افزایش تعداد گروه­های هیدروکسیل حلقه­های آروماتیک در محیط واکنش، قدرت مهارکنندگی رایکال­های آزاد موسیلاژ افزایش یافت. ترکیب نانو­الیاف در نمودارهای طیف­سنجی نشان داد که در نمونه‌های نانو­کامپوزیت و ریزپوشانی شده، از ویتامین D3، دو پیک قوی در محدوده 1454 و 1743 بر سانتی­متروجود دارند که ارتعاشات کششی مربوط به گروه C=C در حلقه‌های آروماتیک ترکیبات فنولیک را نشان می‌دهند. بر اساس یافته‌ها، ترکیبات زیست‌فعال‌ جهت افزایش دسترسی به ویتامین D3 را می‌توان در نانوالیاف الکتروریسی شده موسیلاژ L. Salvia macrosiphon/ پلی ونیل الکل/ کنسانتره پروتئین سبوس برنج محصور کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Studying the production of composite nanofibers from the hydrocolloid compounds of Salvia macrosiphon L. seeds by electrospinning method in order to cover vitamin D3

نویسندگان English

Sedigheh Yazdanpanah
mona ghorbaninezhad
ISLAMIC AZAD UNIVERSITY OF KAZEROUN
چکیده English

Advancement in the production processes of nanostructures with appropriate formula characteristics provides the production of stable nanoparticles with the ability to be used in the food industry. Microencapsulated bioactive compounds can be integrated into electrospun fibers to achieve greater stability of nanoparticles against heat and light, which leads to increased storage time. In the present study, composite nanofiber layers were made from mucilage extracted from Salvia macrosiphon L. seeds using electrospinning. The nanocomposite of nanofibers was prepared from polyvinyl alcohol/rice bran protein isolate/ Salvia macrosiphon L. seed mucilage in different ratios. Then the morphology and FTIR spectroscopy were investigated. The average diameter of the produced nanofibers is about 40 nm and the coefficient of variance is 13%, which showed that the diameter of the fibers is relatively uniform. Increasing the concentration of the mucilage solution and the constant percentage of polyvinyl alcohol significantly increased the diameter of the nanofibers. In the next step, vitamin D3 was encapsulated in polyvinyl alcohol nanofibers and rice bran protein concentrate. FTIR results confirmed the presence of vitamin D3 in the prepared nanofibers. At higher concentrations of phenolic compounds, with the increase in the number of hydroxyl groups of aromatic rings in the reaction medium, the inhibitory power of mucilage free radicals increased. The composition of nanofibers in the spectroscopic graphs showed that there are two strong peaks in the range of 1454 and 1743 CM-1 from vitamin D3 in the nanocomposite and microcoated samples which show the stretching vibrations related to the C=C group in the aromatic rings of phenolic compounds. Based on the findings, bioactive compounds to increase access to vitamin D3 can be enclosed in electrospun nanofibers of Salvia macrosiphon L. mucilage/polyvinyl alcohol/rice bran protein concentrate.

کلیدواژه‌ها English

Electrospinning method
Nanofiber
Salvia macrosiphon L
[1] Zurutuza, A., & Marinelli, C. (2014). Challenges and opportunities in graphene commercialization. Nature Nanotechnology, 9(10), 730–734. http://dx.doi.org/10.1038/ nnano.2014.225
[2] Yang, D. Z., Yu, K., Ai, Y. F., Zhen, H. P., Nie, J., & Kennedy, J. F. (2011). The mineralization of electrospun chitosan/poly(vinyl alcohol) nanofibrous membranes. Carbohydrate Polymers, 84(3), 990–996. https://doi.org/10.1016/j. carbpol.2010.12.057
[3] Zeng, Y., Zhu, Z., Du, D., & Lin, Y. (2016). Nanomaterial-based electrochemical biosensors for food safety. Journal of Electroanalytical Chemistry, 781, 147–154. http://dx.doi. org/10.1016/j.jelechem.2016.10.030
[4] Deng, L. L., Li, Y., Feng, F. Q., & Zhang, H. (2019). Study on wettability, mechanical property and biocompatibility of electrospun gelatin/zein nanofibers cross-linked by glucose. Food Hydrocolloids, 87, 1–10. https://doi.org/10.1016/j. foodhyd.2018.07.042
[5] Yun, P., Devahastin, S., & Chiewchan, N. (2021). Microstructures of encapsulates and their relations with encapsulation efficiency and controlled release of bioactive constituents: A review. Comprehensive Reviews in Food Science and Food Safety, 20, 1768–1799. https://doi.org/10.1111/1541-4337.12701
[6] Wen, P., Zong, M. H., Linhardt, R. J., Feng, K., & Wu, H. (2017). Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends in Food Science and Technology, 70, 56–68. https://doi.org/10.1016/j.tifs.2017.10.009
[7] Otoni, C. G., Avena-Bustillos, R. J., Azeredo, H. M., Lorevice, M. V., Moura, M. R., Mattoso, L. H., et al. (2017). Recent advances on edible films based on fruits and vegetables—a review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151–1169
[8] Xu, Cai, S. B., Sellers, A., & Yang, Y. Q. (2014). Electrospun ultrafine fibrous wheat glutenin scaffolds with three-dimensionally random organization and water stability for soft tissue engineering. Journal of Biotechnology, 184, 179–186. https://doi.org/ 10.1016/j.jbiotec.2014.05.011
[9] Santos, F. N., Souza, E. J. D., Souza, J. F., Pires, J. B., Siebeneichler, T. J., Kringel, D. H., … Zavareze, E. D. R. (2022). Encapsulation of anthocyanic extract of jambolan (Syzygium cumini (L.)) in zein sub - micron fibers produced by electrospinning. Food Biophysics. https://doi.org/10.1007/s11483-022-09758-3
[10] De Freitas Zˆompero, R. H., L´opez-Rubio, A., de Pinho, S. C., Lagaron, J. M., & de la Torre, L. G. (2015). Hybrid encapsulation structures based on 𝛽-carotene-loaded nanoliposomes within electrospun fibers. Colloids and Surfaces B: Biointerfaces, 134, 475– 482. 10.1016/j.colsurfb.2015.03.015.
[11] Najafi Z., Cetinkaya, T., Bildik, F., Altay F., & Şahin-Yeşilçubuk, N., 2022. Nanoencapsulation of saffron (Crocus sativus L.) extract in zein nanofibers and their application for the preservation of sea bass fillets. LWT - Food Science and Technology, 163 (2022) 113588. 10.1016/j.lwt.2022.113588
[12] Wang, Yi, S., Chu, C., Liu, H., & Jiang, S. (2015). Preparation, antimicrobial and release behaviors of nisin-poly (vinyl alcohol)/wheat gluten/ZrO2 nanofibrous membranes. Journal of Materials Science, 50(14), 5068–5078. https://doi.org/10.1007/s10853- 015-9059-0
[13] Xu, Li, J. J., Yu, D. G., Williams, G. R., Yang, J. H., & Wang, X. (2017). Influence of the drug distribution in electrospun gliadin fibers on drug-release behavior. European Journal of Pharmaceutical Sciences, 106, 422–430. https://doi.org/10.1016/j. ejps.2017.06.017
[14] Zhang, Deng, L., Zhong, H., Pan, J., & Zhang, H. (2020). Superior water stability and antimicrobial activity of electrospun gluten nanofibrous films incorporated with glycerol monolaurate. Food Hydrocolloids, 109, 106–116. https://doi.org/10.1016/j. foodhyd.2020.106116.
[15] Aziz, S., Hosseinzadeh, L., Arkan, E., & Azandaryani, A. H. (2019). Preparation of electrospun nanofibers based on wheat gluten containing azathioprine for biomedical application. International Journal of Polymeric Materials, 68(11), 639–646. https://doi.org/10.1080/00914037.2018.1482464
[16] Elham, T.-K., Hossein Goli, S. A., & Milad, F. (2017). Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds. International Journal of Biological Macromolecules, 103, 1062–1068. https://doi.org/ 10.1016/j.ijbiomac.2017.05.152
[17]. Feng, L., Li, R., Song, R., & Wang, R. (2010). Formation process of a strong waterrepellent alumina surface by the sol–gel method. Applied Surface Science, 256(10), 3191–3196. https://doi.org/10.1016/j.apsusc.2009.12.004
[18] Mir, S. A., Dar, B. N., Wani, A. A., & Shah, M. A. (2018). Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends in Food Science & Technology, 80, 141–154. https://doi.org/10.1016/j.tifs.2018.08.004
[19] Mayeli, M., Mehdizadeh, T., Tajik, H., Esmaeli, F., & Langroodi, A. M. (2019). Combined impacts of zein coating enriched with methanolic and ethanolic extracts of sour orange peel and vacuum packing on the shelf life of refrigerated rainbow trout. Flavour and Fragrance Journal, 34(6), 460–470.
[20] Pham, T. T., Nguyen, L. L. P., Dam, M. S., & Baranyai, L. (2023). Application of edible coating in extension of fruit shelf life. AgriEngineering, 5, 520–536.
[21] Singh, T. S., & Sogi, D. S. (2018). Comparative study of structural and functional characterization of bran protein concentrates from superfine, fine and coarse rice cultivars. International Journal of Biological Macromolecules, 111, 281–288.
[22] Amaglian , L., Jonathan, O’R., Kelly, Mahony, J. A. (2017). Composition and protein profile analysis of rice protein ingredients. Journal of Food Composition and Analysis 59, 10.1016/j.jfca.2016.12.026
[23] Mallard S.R., A.S. Howe, L.A. Houghton, Vitamin D status and weight loss: a systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials, Am. J. Clin. Nutr. 104 (4) (2016) 1151–1159, https://doi.org/10.3945/ajcn.116.13 6879.
[24] Tavares, L. S., Junqueira, L. A., Guimarães, I. C. O., & Resende, J. V. (2018). Coldextraction method of chia seed mucilage (Salvia hispanica L.): Effect on yieldand rheological behavior. Journal of Food Science and Technology, 55, 457–466. doi:10.1007/s13197-017-2954-4.
[25] Singhal, S., Rasane, P., Kaur, S., Singh, J., & Gupta, N. (2020). Thermal degradation kinetics of bioactive compounds in button mushroom (Agaricus bisporus) during tray drying process. Journal of Food Process Engineering, 43, Article e13555.
[26] Kang, S., Kong, F., Shi, X., Han, H., Li, M., Guan, B., et al. (2020). Antibacterial activity and mechanism of lactobionic acid against Pseudomonas fluorescens and Methicillinresistant Staphylococcus aureus and its application on whole milk. Food Control, 108, Article 106876. https://doi.org/10.1016/j.foodcont.2019.106876
[27] Wani, I. A., Sogi, D. S., & Gill, B. S. (2015a). Physico-chemical and functional properties of native and hydrolysed protein isolates from Indian black gram (Phaseolus mungo L.) cultivars. LWT Food Science & Technology, 60, 848–854.
[28] Ahmad, N. A., Leo, C. P., Ahmad, A. L., & Ramli, W. K. W. (2015). Membranes with great hydrophobicity: A review on preparation and characterization. Separation and Purification Reviews, 44, 109–134. https://doi.org/10.1080/15422119.2013.848816.
[29] Fonseca, L. M., Oliveira, J. P., Crizel, R. L., Silva, F. T., Zavareze, E. R., & Borges, C. D. (2020a). Electrospun starch fibers loaded with pinh˜ ao (Araucaria angustifolia) coat extract rich in phenolic compounds. Food Biophysics, 15, 355–367. https://doi.org/ 10.1007/s11483-020-09629-9
[30] Ebrahimi Behzad, Reza Mohammadi , Milad Rouhi , Amir Mohammad Mortazavian, , Saeedeh Shojaee-Aliabadi, , Mohammad Reza Koushki (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. J. LWT Volume 87, January 2018, Pages 54-60 https://doi.org/10.1016/j.lwt.2017.08.066
[31] Kiani, A., Fathi, M., & Ghasemi, S. M. (2017). Production of novel vitamin D3 loaded lipid nanocapsules for milk fortification. International Journal of Food Properties, 20(11), 2466- 2476. DOI: 10.1080/10942912.2016.1240690
[32] Batista, J. D. F., Dantas, A. M., dos Santos Fonseca, J. V., Madruga, M. S., Fernandes, F. A. N., Rodrigues, S., & da Silva Campelo Borges, G. (2021). Effects of cold plasma on avocado pulp (Persea americana Mill.): Chemical characteristics and bioactive compounds. Journal of Food Processing and Preservation, 45, 15179. https:// doi.org/10.1111/jfpp.15179
[33] Ali R, Khan S, Khan M, Adnan M, Ali I, Khan TA, et al. A systematic review of medicinal plants used against Echinococcus granulosus. Plos One 2020;15: e0240456.
[34] Jing, Y., Huang, J., & Yu, X. (2019). Maintenance of the antioxidant capacity of fresh-cut pineapple by procyanidin-grafted chitosan. Postharvest Biology and Technology, 154, 79–86. https://doi.org/10.1016/j.postharvbio.2019.04.022
[35] Rodrigues, M. A. V., Bertolo, M. R. V., Marangon, C. A., Martins, V. C. A., & Plepis, A. M. G. (2020). Chitosan and gelatin materials incorporated with phenolic extracts of grape seed and jabuticaba peel: Rheological, physicochemical, antioxidant, antimicrobial and barrier properties. International Journal of Biological Macromolecules, 160, 769–779. https://doi.org/10.1016/j.ijbiomac.2020.05.240
[36] Oliveira,J.G. de A.R.C. Braga, B.R. 2021. De Oliveira, F.P. Gomes, V.L. Moreira, V.A. C. Pereira, M.B. Egea, The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films; A review, Food Res. Int. 142, 110202.
[37] Abo-Samaha, M. I., Alghamdi, Y. S., El-Shobokshy, S. A., Albogami, S., ElMaksoud, E. M. A., Farrag, F., & El-Hack, M. E. A. (2022). Licorice extract supplementation affects antioxidant activity, growth-related genes, lipid metabolism, and immune markers in broiler chickens. Life (Chicago, Ill. : 1978), 12 (6), 914
[38] Thakur, A. K., & Raj, P. (2017). Pharmacological perspective of Glycyrrhiza glabra Linn: A mini-review. Journal of Analytical & Pharmaceutical Research, 5(5), 00156.
[39] Petriccione, M., De Sanctis, F., Pasquariello, M. S., Mastrobuoni, F., Rega, P., Scortichini, M., & Mencarelli, F. (2015). The Effect of Chitosan Coating on the Quality and Nutraceutical Traits of Sweet Cherry During Postharvest Life. Food and Bioprocess Technology, 8(2), 394–408. https://doi.org/10.1007/s11947-014-1411-x
[40] Sakthiguru, N., & Sithique, M. A. (2020). Fabrication of bioinspired chitosan/gelatin/ allantoin biocomposite film for wound dressing application. International Journal of Biological Macromolecules, 152, 873–883. and diverse applications in the food industry. Trends in Food Science & Technology, 114, 70–82.
[42] Shakeri MS, Shahidi F, Beiraghi‐Toosi S, Bahrami A. Antimicrobial activity of Zataria multiflora Boiss. essential oil incorporated with whey protein based films on pathogenic and probiotic bacteria. Int J Food Sci Tech 2011;46 (3):549-54. [in persion]
[41] Safari, R., Adel, M., Monji, H., Riyahi Cholicheh, H., Nematolahi, A. 2015. Evaluation of antibacterial effect of some of the endemic herbal essential oils on Streptococcus iniae in invitro. Journal of Aquatic Ecology. 4(4): 40 -33 . (in Persian)
[43] Li, J., Pan, K., Tian, H., & Yin, L. (2020). The potential of electrospinning/electrospraying technology in the rational design of hydrogel structures. Macromolecular Materials and Engineering, 305(8), 1438. https://doi.org/10.1002/mame.202000285
[44] Chen, Z.G., Wang, P.W., Wei, B., Mo, X.M., Cui, F.Z. (2010). Electrospun collagen-chitosan nanofibr A biomimetic extracellular matrix for endothelial cell and smooth muscell cell. Acta Biomarerialia., 6, 372-382.
[45] Wengsasulak, S.W., Pathumban, S. (2014). Effect of entrapped alfa-tocopherol on mucoadhesivity and evaluation of the release degradation and swelling characteristics of zein-chitosan composite electrospuun fibers. J. Food Eng., 120, 110-117.
[46] Siimon, K., Reemann, P., Poder, A., Pook, M., Kangur, T., Kingo, K., … Jaervekuelg, M. (2014). Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering. Materials Science and Engineering: C, 42(sep), 538–545. https://doi.org/10.1016/j.msec.2014.05.075
[47] Gadhave, R. V., Mahanwar, P. A., & Gadekar, P. T. (2019). Effect of glutaraldehyde on thermal and mechanical properties of starch and polyvinyl alcohol blends. Designed Monomers and Polymers, 22(1), 164–170.
[48] Wang, Yi, S., Chu, C., Liu, H., & Jiang, S. (2015). Preparation, antimicrobial and release behaviors of nisin-poly (vinyl alcohol)/wheat gluten/ZrO2 nanofibrous membranes. Journal of Materials Science, 50(14), 5068–5078. https://doi.org/10.1007/s10853- 015-9059-0