[1] Coutinho, T. C., Ferreira, M. C., Rosa, L. H., de Oliveira, A. M., & de Oliveira Junior, E. N. (2020). Penicillium citrinum and Penicillium mallochii: New phytopathogens of orange fruit and their control using chitosan. Carbohydrate polymers, 234, 115918.
[2] Fischer, I., Lourenço, S. A., & Amorim, L. (2008). Postharvest diseases in citrus and characterization of the fungal population in São Paulo’s wholesale market. Tropical Plant Pathology, 33, 219-226.
[3] Al-Sheikh, H., & Yehia, R. (2016). In vitro antifungal efficacy of Aspergillus niger ATCC 9642 chitosan-AgNPs composite against post-harvest disease of citrus fruits. Applied Biochemistry and Microbiology, 52(4), 413-420.
[4] Behbahani, B. A., Shahidi, F., Yazdi, F. T., & Mohebbi, M. (2013). Antifungal effect of aqueous and ethanolic mangrove plant extract on pathogenic fungus" in vitro". International Journal of Agronomy and Plant Production, 4(7), 1652-1658.
[5] Rahmati-Joneidabad, M., Alizadeh Behbahani, B., & Noshad, M. (2021). Antifungal effect of Satureja khuzestanica essential oil on Aspergillus niger, Botrytis cinerea, and Rhizopus stolonifer causing strawberry’s rot and mold. Journal of food science and technology (Iran), 18(115), 171-180.
[6] Yazdi, F. T., & Behbahani, B. A. (2013). Antimicrobial effect of the aqueous and ethanolic Teucrium polium L. extracts on gram positive and gram negative bacteria “in vitro”. Archives of Advances in Biosciences, 4(4), 56-62.
[7] Sureshjani, M. H., Yazdi, F. T., Mortazavi, S. A., Behbahani, B. A., & Shahidi, F. (2014). Antimicrobial effects of Kelussia odoratissima extracts against food borne and food spoilage bacteria" in vitro. Journal of Paramedical Sciences, 5(2), 115-120.
[8] Alizadeh Behbahani, B., Shahidi, F., Yazdi, F. T., Mortazavi, S. A., & Mohebbi, M. (2017). Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. Journal of Food Measurement and Characterization, 11, 847-863.
[9] Alizadeh Behbahani, B., Falah, F., Lavi Arab, F., Vasiee, M., & Tabatabaee Yazdi, F. (2020). Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evidence-based complementary and alternative medicine, 2020.
[10] Alizadeh Behbahani, B., Falah, F., Vasiee, A., & Tabatabaee Yazdi, F. (2021). Control of microbial growth and lipid oxidation in beef using a Lepidium perfoliatum seed mucilage edible coating incorporated with chicory essential oil. Food science & nutrition, 9(5), 2458-2467.
[11] Alizadeh Behbahani, B., & Imani Fooladi, A. A. (2018). Development of a novel edible coating made by Balangu seed mucilage and Feverfew essential oil and investigation of its effect on the shelf life of beef slices during refrigerated storage through intelligent modeling. Journal of Food Safety, 38(3), e12443.
[12] Jalil Sarghaleh, S., Alizadeh Behbahani, B., Hojjati, M., Vasiee, A., & Noshad, M. (2023). Evaluation of the constituent compounds, antioxidant, anticancer, and antimicrobial potential of Prangos ferulacea plant extract and its effect on Listeria monocytogenes virulence gene expression [Original Research]. Frontiers in Microbiology, 14.
[13] Heydari, S., Jooyandeh, H., Alizadeh Behbahani, B., & Noshad, M. (2020). The impact of Qodume Shirazi seed mucilage‐based edible coating containing lavender essential oil on the quality enhancement and shelf life improvement of fresh ostrich meat: An experimental and modeling study. Food Science & Nutrition, 8(12), 6497-6512.
[14] Saffari Samani, E., Jooyandeh, H., & Alizadeh Behbahani, B. (2023). The impact of Zedo gum based edible coating containing Zataria multiflora Boiss essential oil on the quality enhancement and shelf life improvement of fresh buffalo meat. Journal of Food Measurement and Characterization.
[15] Alizadeh Behbahani, B., Noshad, M., & Jooyandeh, H. (2020). Improving oxidative and microbial stability of beef using Shahri Balangu seed mucilage loaded with Cumin essential oil as a bioactive edible coating. Biocatalysis and Agricultural Biotechnology, 24, 101563.
[16] Falah, F., Shirani, K., Vasiee, A., Yazdi, F. T., & Behbahani, B. A. (2021). In vitro screening of phytochemicals, antioxidant, antimicrobial, and cytotoxic activity of Echinops setifer extract. Biocatalysis and Agricultural Biotechnology, 35, 102102.
[17] Barzegar, H., Alizadeh Behbahani, B., & Mehrnia, M. A. (2020). Quality retention and shelf life extension of fresh beef using Lepidium sativum seed mucilage-based edible coating containing Heracleum lasiopetalum essential oil: an experimental and modeling study. Food Science and Biotechnology, 29(5), 717-728.
[18] Moein, S., & Moein, M. R. (2010). Relationship between antioxidant properties and phenolics in Zhumeria majdae. Journal of Medicinal Plants Research, 4(7), 517-521.
[19] Saeidi, M., Asili, J., Emami, S. A., Moshtaghi, N., & Malekzadeh-Shafaroudi, S. (2019). Comparative volatile composition, antioxidant and cytotoxic evaluation of the essential oil of Zhumeria majdae from south of Iran. Iranian Journal of Basic Medical Sciences, 22(1), 80-85.
[20] Rustaiyan, A., Samadizadeh, M., Habibi, Z., & Jakupovic, J. (1995). Two diterpenes with rearranged abietane skeletons from Zhumeria majdae. Phytochemistry, 39(1), 163-165.
[21] Ebadollahi, A., Khosravi, R., Sendi, J. J., Mahboubi, M., & Kosari, A. A. (2014). Chemical composition of essential oil from Zhumeria majdae Rech. F. & Wendelbo and its bioactivities against Tribolium castaneum Herbst (Tenebrionidae) larvae. Journal of Essential Oil Bearing Plants, 17(5), 824-831.
[22] Sanei-Dehkordi, A., Soleimani-Ahmadi, M., Akbarzadeh, K., Salim Abadi, Y., Paksa, A., Gorouhi, M. A., & Mohammadi-Azni, S. (2016). Chemical composition and mosquito larvicidal properties of essential oil from leaves of an Iranian indigenous plant Zhumeria majdae. Journal of Essential Oil Bearing Plants, 19(6), 1454-1461.
[23] Wang, H.-F., Yih, K.-H., Yang, C.-H., & Huang, K.-F. (2017). Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils. Journal of Food and Drug Analysis, 25(4), 881-889.
[24] Saki, A., Mozafari, H., Asl, K. K., Sani, B., & Mirza, M. (2019). Plant yield, antioxidant capacity and essential oil quality of Satureja mutica supplied with cattle manure and wheat straw in different plant densities. Communications in Soil Science and Plant Analysis, 50(21), 2683-2693.
[25] Omidpanah, N., Valifard, M., Esmaeili, M., Yousefi, R., & Moghadam, A. (2015). Antioxidant and antibacterial properties of the essential oils of two Iranian Medicinal Plants: Zhumeria majdae and Salvia mirzayanii. Journal of Advanced Medical Sciences and Applied Technologies, 1(1), 51-60.
[26] Rocchetti, G., Gregorio, R. P., Lorenzo, J. M., Barba, F. J., Oliveira, P. G., Prieto, M. A., Simal‐Gandara, J., Mosele, J. I., Motilva, M. J., & Tomas, M. (2022). Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Comprehensive Reviews in Food Science and Food Safety, 21(2), 811-842.
[27] Imani, Z., Asgarpanah, J., Hashemi, F., & Hezaveh, J. H. (2015). Composition and antifungal activity of Zhumeria majdae essential oil. Current Medical Mycology, 1(4), 13-19.
[28] Sharififar, F., Mozaffarian, V., Moshafi, M., Dehghan-Nudeh, G., Parandeh-Rezvani, J., & Mahdavi, Z. (2008). Chemical composition and biological activities of Zhumeria majdae Resh. F. & wendelbo. Jundishapur Journal of Natural Pharmaceutical Products, 3(1), 8-18.
[29] Nooshkam, M., Varidi, M., & Alkobeisi, F. (2022). Bioactive food foams stabilized by licorice extract/whey protein isolate/sodium alginate ternary complexes. Food Hydrocolloids, 126, 107488.
[30] Nooshkam, M., Falah, F., Zareie, Z., Tabatabaei Yazdi, F., Shahidi, F., & Mortazavi, S. A. (2019). Antioxidant potential and antimicrobial activity of chitosan–inulin conjugates obtained through the Maillard reaction. Food Science and Biotechnology, 28(6), 1861-1869.
[31] Nooshkam, M., Varidi, M., & Bashash, M. (2019). The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry, 275, 644-660.
[32] Garavand, F., Eghbal, N., Nooshkam, M., Miraballes, I., & Jafari, S. M. (2021). Salt, spices, and seasonings formulated with nano/microencapsulated ingredients. In Application of Nano/Microencapsulated Ingredients in Food Products (pp. 435-467). Elsevier.
[33] Davari, M., & Ezazi, R. (2017). Chemical composition and antifungal activity of the essential oil of Zhumeria majdae, Heracleum persicum and Eucalyptus sp. against some important phytopathogenic fungi. Journal de mycologie medicale, 27(4), 463-468.
[34] Arman, M., Yousefzadi, M., & Ebrahimi, S. N. (2009). Antimicrobial activity and composition of the essential oil from Zhumeria majdae Rech. f. & Wendelbo. Journal of Essential Oil Bearing Plants, 12(5), 630-634.
[35] Mahboubi, M., & Kazempour, N. (2009). In vitro antimicrobial activity of some essential oils from Labiatae family. Journal of Essential Oil Bearing Plants, 12(4), 494-508.
[36] Mahboubi, M., & Kazempour, N. (2009). Antimicrobial activity of Zhumeria majdae Rech. F. & Wendelbo essential oil against different microorganisms from Iran. Pharmacognosy magazine, 5(19), 105-108.
[37] Alizadeh Behbahani, B., & Rahmati-Joneidabad, M. (2021). Boswellia sacra essential oil: Antioxidant activity and antifungal effect on some spoilage fungi causing strawberry rot. Journal of food science and technology (Iran), 18(114), 25-34.