Karamian, A., hazbavi, i., & Shahbazi, F. (2019). Behavior of ohmic heating of carrot juice affected by electrode and voltage gradient. Innovative Food Technologies, 7(1), 31-40. https://doi.org/10.22104/jift.2019.3199.1769
Mahmoodi, M. J., & Azadbakht, M. (2019). Investigating the effects of blanching and ohmic heating at microwave drying on some quality characteristics of carrot slices. Innovative Food Technologies, 6(2), 247-256. https://doi.org/10.22104/jift.2018.3130.1750
Pokhrel, P. R., Toniazzo, T., Boulet, C., Oner, M. E., Sablani, S. S., Tang, J., & Barbosa-Cánovas, G. V. (2019). Inactivation of Listeria innocua and Escherichia coli in carrot juice by combining high pressure processing, nisin, and mild thermal treatments. Innovative Food Science & Emerging Technologies, 54, 93-102. https://doi.org/10.1016/j.ifset.2019.03.007
Müller, W. A., Ferreira Marczak, L. D., & Sarkis, J. R. (2020). Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends in Food Science & Technology, 99, 650-659. https://doi.org/10.1016/j.tifs.2020.03.021
Lee, J.-Y., Kim, S.-S., & Kang, D.-H. (2015). Effect of pH for inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice by ohmic heating. LWT - Food Science and Technology, 62(1, Part 1), 83-88. https://doi.org/10.1016/j.lwt.2015.01.020
Shao, L., Tian, X., Yu, Q., Xu, L., Li, X., & Dai, R. (2019). Inactivation and recovery kinetics of Escherichia coli O157:H7 treated with ohmic heating in broth. LWT, 110, 1-7. https://doi.org/10.1016/j.lwt.2019.04.062
Jabbar, S., Abid, M., Hu, B., Wu, T., Hashim, M. M., Lei, S., Zhu, X., & Zeng, X. (2014). Quality of carrot juice as influenced by blanching and sonication treatments. LWT - Food Science and Technology, 55(1), 16-21. https://doi.org/10.1016/j.lwt.2013.09.007
Hashemi, S. M. B., Mahmoudi, M. R., Roohi, R., Torres, I., & Saraiva, J. A. (2019). Statistical modeling of the inactivation of spoilage microorganisms during ohmic heating of sour orange juice. LWT, 111, 821-828. https://doi.org/10.1016/j.lwt.2019.04.077
Gamboa-Santos, J., et al. (2012). "Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots." European Food Research and Technology 234(6): 1071-1079. https://doi.org/10.1007/s00217-012-1726-7
Brochier, B., et al. (2016). "Influence of moderate electric field on inactivation kinetics of peroxidase and polyphenol oxidase and on phenolic compounds of sugarcane juice treated by ohmic heating." Lwt 74: 396-403. https://doi.org/10.1016/j.lwt.2016.08.001
Barati, F., Zamindar, N., & Rafiaei, S. (2024). The Study of Kinetics of Polyphenol Oxidase Inactivation in Carrot Juice by Ohmic Heating. Iranian journal of food science and industry, 21(153). https://doi.org/10.22034/FSCT.201.153.63
Zhang, Y., Wang, Y., Zhou, L., & Liao, X. (2010). A comparative study of inactivation of peach polyphenol oxidase and carrot polyphenol oxidase induced by high-pressure carbon dioxide. International Journal of Food Science & Technology, 45(11), 2297-2305. https://doi.org/10.1111/j.1365-2621.2010.02403.x
Bikle, D. D., Siiteri, P. K., Ryzen, E., Haddad, J. G., & Gee, E. (1985). Serum Protein Binding of 1,25-Dihydroxyvitamin D: A Reevaluation by Direct Measurement of Free Metabolite Levels*. The Journal of Clinical Endocrinology & Metabolism, 61(5), 969-975. https://doi.org/10.1210/jcem-61-5-969
Dai, Y., Wen, Z., Ye, T., Deng, G., Zhang, M., Deng, Q., et al. (2018). Empirical treatment with non-anti-tuberculosis antibiotics decreased microbiological detection in cervical tuberculous lymphadenitis. Diagn Microbiol Infect Dis, 92(3), 245-249. https://doi.org/10.1016/j.diagmicrobio.2018.06.008
Crone, P. B. (1948). The counting of surface colonies of bacteria. Epidemiology and Infection, 46(4), 426-430. https://doi.org/10.1017/S0022172400036603
Buttiaux, R., Samaille, J., & Pierens, Y. (1957). Identification of Coliform Bacteria Isolated from Water. Eijkman Test and Production of Indole at 44°C. IMViC Tests. [L’identification des Eschericheae des eaux. Test d’Eijkman et production d’indole à 44°C. Tests I.M.V.I.C.]. Ann. Inst. Pasteur, Lille, 8, 137–149. https://doi.org/10.5555/19572702971
Abbasi, Z., Jafari, M., & Fazel, M. (2019). Potential of microencapsulation to protect ascorbic acid under different temperature and pH during heating process. Brazilian Journal of Technology, 2(2), 573-589. https://ojs.brazilianjournals.com.br/ojs/index.php/BJT/article/view/2067
Kedia, P., Badhe, Y., Gupta, R., Kausley, S., & Rai, B. (2023). Modeling the effect of pH on the permeability of dried chitosan film. Journal of Food Engineering, 358, 111682. https://doi.org/10.1016/j.jfoodeng.2023.111682
Knirsch, M. C., Alves dos Santos, C., Martins de Oliveira Soares Vicente, A. A., & Vessoni Penna, T. C. (2010). Ohmic heating – a review. Trends in Food Science & Technology, 21(9), 436-441. https://doi.org/10.1016/j.tifs.2010.06.003
Mokhtari, M., Zamindar, N., Zia, M., Doudi, M., & Ghasemi Sepero, N. (2024). Inactivation of Byssochlamys fulva during ohmic heating of tomato juice. Food Science and Technology International, 10820132231222509. https://doi.org/10.1177/10820132231222509
USFDA. 2018. Small Entity Compliance Guide: Juice HACCP. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/small-entity-compliance-guide-juice-haccp [Accessed 30 Nuvember 2018].
Keshani, M., Zamindar, N., & Hajian, R. (2021). Physicochemical properties of frozen tuna fish as affected by immersion ohmic thawing and conventional thawing. Food Science and Technology International, 28(8), 728-734. https://doi.org/10.1177/10820132211056776
Keshani, M., Zamindar, N., & Hajian, R. (2020). Effect of Immersion Ohmic Heating on Thawing Rate and Properties of Frozen Tuna Fish. Iranian Food Science and Technology Research Journal, 16(5), 621-628. https://doi.org/10.22067/ifstrj.v16i5.82797