بررسی خواص فراسودمندی ترکیبات فنولی کپسوله شده پوست انار ایرانی

نویسندگان
گروه علوم و صنایع غذایی، مرکز تحقیقات لیزر و بیوفوتونیک در فناوریهای زیستی، دانشگاه آزاد اسلامی واحد اصفهان(خوراسگان)، اصفهان، ایران
چکیده
امروزه مواد ­غذایی علاوه بر اینکه به عنوان یک منبع تغذیه­ای به­حساب می­آیند، همچنین به علت داشتن مواد زیست­فعال طبیعی به عنوان مواد سلامتی بخش برای مصرف­کنندگان نقش دارند. ترکیبات فنولیک که در پوست میوه انار به فراوانی دیده می­شوند از جمله ترکیبات زیست­­فعال می­باشند که می­توان بوسیله­ی نانو حامل­ها برای غنی سازی مواد­ غذایی به آنها­ افزود. هدف از این مطالعه درون ­­­­­­پوشانی ترکیبات فنولیک موجود در پنج رقم پوست انار واریته­های ایرانی با روش نانونیوزوم و بررسی خصوصیات شیمیایی عصاره پوست انار از جمله فعالیت آنتی­اکسیدانی، راندمان استخراج عصاره و خاصیت فنولی توسط منحنی استاندارد اسید گالیک طبق روش فولین-سیو کالتیو و همچنین بررسی خصوصیات ریز پوشش­های حاصل با استفاده از تجزیه­وتحلیل اندازه ذرات، پتانسیل زتا و مقایسه آنها برای دست یافتن به بیشترین کارایی در بین پنج رقم انار می­باشد. نتایج مطالعه نشان ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­داد که پوست انارهای جمع­آوری شده تفاوت­های معنی­­­­­­­­­­­­­­­­داری (در سطح احتمال یک درصد 05/0p<) از نظر خصوصیات فیزیکوشیمیایی دارند. بررسی­ نتایج حاصله از خصوصیات فیزیکو­­شیمیایی عصاره پوست انار، حاکی از آن بود که انار پوست سفید رقم گرچ­شهوار بالاترین میزان ترکیبات فنولیک (72/6±00/78 میلی­گرم معادل اسید گالیک در 100 گرم) و همچنین بیشترین خاصیت آنتی اکسیدانی 42% را دارد. با توجه به نتایج بدست­آمده از این پژوهش می­توان گفت که کپسول­های حاوی عصاره پوست انار رقم پوست سفید گرچ ­شهوار بهترین کارایی کپسوله­کردن (71%) را دارد، که استفاده از نانو حامل­های حاوی این رقم انار در مواد غذایی می­تواند تأثیر قابل ملاحظه­ای در حفظ و پایداری ترکیبات حساس به تغییرات محیطی داشته باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Functional properties of encapsulated phenolic compounds of Iranian pomegranate peel

نویسندگان English

Zahra Borjizadeh
Mohammad Goli
Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده English

Today, food is considered as a source of nutrition. Foods are known as health-giving substances for consumers due to their natural bioactive substances. Phenolic compounds that are found in the peel of pomegranate fruit are among the bioactive compounds. These materials can be used by nanocarriers to enrich food. The purpose of this study is to investigate the phenolic compounds present in five cultivar of Iranian pomegranate peels using the nano method and to further investigate the chemical properties of pomegranate peel extract, including antioxidant, extract extraction efficiency and phenolic properties. This investigation was done by standard curve of gallic acid according to folin-ciocalteu method. Also, the characteristics of the resulting encapsulation were investigated using particle size analysis and zeta potential. The purpose of their comparison is to achieve the highest efficiency among five pomegranate cultivars. The results of the study showed that the peels of the collected pomegranates have significant differences (at the probability level of one percent p<0.05) in terms of physicochemical properties. Examining the results obtained from the physicochemical properties of pomegranate peel extract indicated that white peel pomegranate (Grech Shahwar) had the highest amount of phenolic compounds (78.00±6.72 mg equivalent to gallic acid per 100 grams). It also had the highest antioxidant property of 42%. According to the results obtained from this research, it can be said that the capsules containing pomegranate peel extract (white skin type of Gherch Shahwar) have the best encapsulation efficiency (71%). The use of nanocarriers containing this cultivar of pomegranate in food can have a significant effect on the preservation and stability of compounds sensitive to environmental changes.

کلیدواژه‌ها English

Encapsulation
Niosome
phenolic compounds
pomegranate peel
[1] Akhavan. H, Barzegar. M, Weidlich. H, Zimmermann. B. 2015. Phenolic compounds and antioxidant activity of juices from ten Iranian pomegranate cultivars. Journal of Chemistry, 1-7.
[2] Zarezadeh Mehrizi, R. A., Emam-Jomeh, Z., Shahedi Bagh Khandan, M., Loni, E., Akhavan, H. R., Biabani, J. 2013. Identification and quantification of anthocyanins in pomegranate peel extract. Journal of Food science and tech nology. 49, 31-40.
[3] Singh, R. P., Murkhy, K. N. C. & Jayakrapasha, G. H. 2002. Studies on the antioxidant activity of pomegranate (punica granatum) peel and seed extraction using in vitro model. Journal of Agriculture and Food Chemistry, 50, 81-86.
[4] Seeram. N. P., Lee, R., Hardy, M. & Herber, D. 2005. Rapid large scale purification of ellagitannin from pomegranate husk by product of the commercial juice industry. Separation and purification Technology, 41, 49-55.
[5] Rezaeipayandeh, M. Giviyanrad M.H. Mirsaeedrazi H. 2015. Extraction of peel extract of Ten cultivar of Iranian pomegranate by soxhlet and ultrasound methods and measurement of total anthocyanin, Nation congress of food industry science and technology (23).
[6] Rouhani, R. Eyenafshar, S. Ahmadzadeh, R. 2015. Study of anthocyanin and antioxidant compounds derived ethanol extract saffaron flag with the help of ultrasound technology, Iranian Food Science and Technology Research Journal (11) 161-170.
[7] Mahdiyan, E, Arfae, A, Mehrbansangatash, M, 2014. Optimization of anthocyanin extraction and efficiency of pomegranate extract by new ultrasound technology using surface response method, National conference of medicinal plant and sustainable agriculture, (2).
[8] Momin, J., Jayakumar, C. and Prajapati, J. 2013. Potential of nanotechnology in functional foods. Emirates Journal of Food Agriculture, 25: 10-19.
[9] Rashidi, L. and Khosravi, K. 2011. The application of nanotechnology in food industry. Food Science and Nutrition, 51: 723-730.
[10] Seyed Hajizadeh, H. , Zahedi, S. M. , Rezaei, S. 2021. Effect of nano-encapsuhation of rosemary in quality preserving and antioxidative activity of apricot (prunus armeniaca cv. Tabarzeh) during storage life. Iranian Journal of Food Science and Technology. (18) 183-196.
[11] Bojmehrani, A. , Hajirostamloo, B. , Vazifedoost, M. , Didar, Z. , Jafari, S. M. 2022. The effect of nanoliposomes containing antioxidant extract of grape pomace on oxidation parameters of soybean oil. Iranian Journal of Food Science and Technology. (19) 171-182.
[12] Mohammadi, A., Jafari, S.M., Esfanjani, A.F. and Akhavan, S. 2016. Application of nano -encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food chemistry. 190: 513 -519.
[13] Zandi, M. , Ganjloo, A. , Bimakr, M. 2022. Encapsulation of musk willow (Salix aegyptiaca L.) essential oil with sodium alginateand whey protein: Characterization, controlled release and mathematical modeling. Iranian Journal of Food Science and Technology. (19) 121-133.
[14] Rahnemoon, P., Sarabi Jamab, M., Javanmard Dakheli, M., Bostan, A. 2016. Evaluation of Extraction Conditions on Phenolic Compounds and Antimicrobial Properties of Pomegranate (Punica Granatum) Peels. Journal of the Food Science and technology, 65, 51-62.
[15] Harikrishnan, R. Balasundaram, C and Bhuvaneswari, R. 2005. Restorative effect of Azadirachta indicab aqueous leaf extract dip treatment on haematological parameter changes in Cyprinus carpio (L.) experimentally infected with Aphanomyces invadans fungus. Journal Applied Ichthyol, 21(5), 410-413.
[16] Mokan, A., Vlase, L., Vodnar, D., Bischin, C., Hanganu, D., Gheldiu, A. M., Oprean, R., Silaghi-Dumitresco, R. & Crisan, G. 2014. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. Leaves Molecules, 10: 19(7), 10056-73.
[17] Sfahlan, A. J., Mahmoodzadeh, A., Hasanzadeh, A., Heidari, R., Jamei, R., 2009. Antioxidants and antiradicals in almond hull and shell (Amygdalus communis L.) as a function of genotype. Food Chemistry, 115: 529-533.
[18] Sebaaly, C., Jraij, A., Fessi, H., Charcosset, C., & Greige-Gerges, H. 2015. Preparation & characterization of clove essential oil-loaded liposomes. Food Chemistry, 178, 52-62.
[19] Yim, H. S., Chye, F. Y., Koo, S. M., Matanjun, P., How, S. E., Ho, C. W., 2012. Optimization of extraction time and temperature for antioxidant activity of edible wild mushroom, Pleurotus porrigens. Food & Bioproducts Processing, 90: 235-242.
[20] Tavano, L., Aiello, R. and Muzzalupo, R. 2014. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties. Colloids and Surfaces B: Biointerfaces, 1; 118, 7-13.
[21] Pando, D., Gutierrez, G. and Pazos, C. 2013. Preparation and characterization of niosomes containing resveratrol. Journal of Food Engineering, 117, 227-234.
[22] Silva, H.D., Cerqueira, M.Â. & Vicente, A.A. 2012. Nanoemulsions for Food Applications: Development and Characterization. Food Bioprocess Technol 5, 854–867 https://doi.org/10.1007/s11947-011-0683-7.
[23] WHO. Coronavirus disease (COVID-19) pandemic. 2020. [Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019]
[24] Honary, S & Zahir, F. 2013. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 2). Tropical Journal of Pharmaceutical Research. 12. 10.4314/tjpr.v12i2.20. 265-73.
[25] Rabinovich-Guilatt L, Couvreur P, Lambert G, Goldstein D, Benita S, Dubernet C. 2004. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chem Phys Lipids.;131(1):1-13. doi:10.1016/j.chemphyslip.2004.04.003.
[26] Pando, D., Caddeo, C. and Pazos, C. 2013. Nanodesign of olein vesicles for the topical delivery of the antioxidant resveratrol. Journal of Pharmacy and Pharmacology, 65, 1158-1167.
[27] Yasoubi. P, Barzegar. M, Sahari. M, Azizi. M.H. 2007. Total Phenolic Contents and Antioxidant Activity of Pomegranate (Punica granatum L.) Peel Extracts. Journal of Agric. Sci. Technol, 9, 35-42.
[28] Wijngaard, H., Hossain M.B., Rai D.K, Brunton. 2012. Technique to extract bioactive compounds from by food by-products of plant origin. Food Research International, 46, 505-513.
[29] Miguel, G., Dundlen, S., Antunes, D., Neves, A., Martins, D. 2004. The Effect of Two Methods of pomegranate (Punica granatum L) Juice Extraction on Quality During Storage at 4°C. Journal of Biomedicine and Biotechnology. 5, 332-337.
[30] Tehranifar, A., Zarei, M., Nemati, Z., Esfandiyari, B., Mohamad Reza Vazifeshenas, M,R, . 2010. Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Scientia Horticulturae, (126) , 180-185.
[31] Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. 2000. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal Agric Food Chem. 48(10), 4581-9.
[32] Pande G, Akoh CC. 2009. Antioxidant capacity and lipid characterization of six Georgia-grown pomegranate cultivars. J Agric Food Chem. 28;57(20); 9427-36.
[33] Mousavinejad, G., Emam-Djomeh, Z., Rezaei, K. and Haddad Khodaparast, M. H. 2009. Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivar. Food Chemistry, 115, 1274-1278.
[34] Borochov-Neori H, Judeinstein S, Tripler E, Harari M, Greenberg A, Shomer I, Holland D. 2009. Seasonal and cultivar variations in antioxidant and sensory quality of pomegranate (Punicagranatum L.) fruit. J. Food Comp. Anal. 22, 189 – 94.
[35] Zhang, L., Fu, Q. & Zhang, Y. 2011. Composition of anthocyanins in pomegranate flowers and their antioxidant activity. Food Chemistry. 127, 1444-1449.
[36] Li, H., Zhao, X. and Lou, H. 2009. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. Journal of Controlled Release. 133, 238-244.
[37] Pando , D,. Beltrán , M,. Gerone , I,. Matos , M,. Pazos, C,. 2015. Resveratrol entrapped niosomes as yoghurt additive. Food Chemistry (170) 281-287.
[38] Yoshioka, T., Sternberg, B. and Florence, A. 1994. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20,40,60 and 80) and a sorbitan trimester (Span 85). International Journal of Pharmaceutics, 105, 1-6.
[39] Hao, Y., Zhao, F. and Li, K. 2002. Studies on a high encapsulation of colchicine by a niosome system. International Journal of Pharmaceutics, 244, 73-80.
[40] Mokhtar, M., Sammour, S. and Megrab, N. 2008. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. International Journal of Pharmaceutics, 361, 104-111.
[41] Balakrishnan, P., Shanmugam, S. and Yong, Ch. 2009. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. International Journal of Pharmaceutics, 377, 1-8.
[42] Zhong Q, Zhang L. 2019. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv Colloid Interface Sci.;273:102033. doi: 10.1016/j.cis.2019.102033. Epub 2019 Aug 31. PMID: 31614266.
[43] McClements, D.J., & Rao, J. 2011. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity, Critical Reviews in Food Science and Nutrition, 51:4, 285-330, DOI: 10.1080/10408398.2011.559558.
[44] Moorthi, C., Krishnan, K. And Kathiresan, K. 2012. Preparation and charactezization of curcumin-piperine dual drug loaded nanoparticles, Asian Pacific Journal of Tropical Biomedicine, 841-848.
[45] Junyaprasert, V., Singhsa, P. and Jintapattanakit, A. 2013. Influence of chemical penetration enhancers on skin permeability of ellagic acid-loaded niosomes. Asian journal of pharmaceutical sciences, 8, 110-117.
[46] Kim SO, Ha TV, Choi YJ, Ko S. 2014. Optimization of homogenization-evaporation process for lycopene nanoemulsion production and its beverage applications. J Food Sci.;79(8):N1604-N1610. doi:10.1111/1750-3841.12472.
[47] Algahtani, MS, & Ahmad, MZ, & Ahmad, J. 2020. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. Journal of Drug Delivery Science and Technology. 59. 10.1016/j.jddst.2020.101847.
[48] Maher PG, Fenelon MA, Zhou Y, Kamrul Haque M, Roos YH. 2011. Optimization of β-casein stabilized nanoemulsions using experimental mixture design. J Food Sci.;76(8):C1108-C1117. doi:10.1111/j.1750-3841.2011.02343.x.
[49] Cheong AM, Tan CP, Nyam KL. Effect of Emulsification Method and Particle Size on the Rate of in vivo Oral Bioavailability of Kenaf (Hibiscus cannabinus L.) Seed Oil. 2018. J Food Sci.;83(7):1964-1969. doi:10.1111/1750-3841.14191.