بررسی کینتیک غیر فعال کردن آنزیم پلی فنول اکسیداز آب هویج در اثر حرارت دهی اهمیک

نویسندگان
1 دانش آموخته کارشناسی ارشد مهندسی علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران
2 گروه علوم و صنایع غذایی- دانشگاه آزاد اسلامی اصفهان (خوراسگان)- اصفهان -ایران
چکیده
هویج بلافاصله پس از آب­گیری تغییر رنگ داده و از نارنجی به قهوه­ای تغییررنگ می­دهد. آنزیم­بری راهی مناسب برای حفظ و تجاری­سازی این محصول است. در این مطالعه از دستگاه اهمیک به عنوان منبع گرمایش استفاده شد و آنزیم پلی­فنول­اکسیداز به عنوان شاخص کفایت غیرفعال سازی آنزیم برای تغییر رنگ آب­هویج انتخاب شد. آب­هویج تازه تحت 3 سطح دمای 70 و80 و90 درجه سانتی­گراد و 4 سطح زمان 0-20-40 و60 ثانیه با ولتاژ ثابت 100 ولت تحت فرآیند حرارتی قرار گرفت و میزان غیرفعال­سازی آنزیم، مواد جامد محلول ، pH و متغیرهای رنگیL*، a* و b* بررسی شدند. مقادیر ثابت سرعت، انرژی فعال­سازی، D-value وQ10 مورد بررسی قرار گرفت. کینتیک غیرفعال سازی پلی­فنول­اکسیداز نمونه­های آب­هویج در دمای 70 و 80 و90 محاسبه شد. تغییرات غیرفعال­سازی آنزیم، مواد جامد محلول ، pH و پارامتر a*با افزایش دما و زمان به وسیله­ی طرح کاملا تصادفی در سطح احتمال 1% معنی­دار شدند. میزان غیرفعال­سازی آنزیم به روش متعارف حمام آب نیز اندازه­گیری شد و با روش اهمیک مقایسه شد که نتیجه­ی آن کارایی بیشتر روش اهمیک را نشانگر شد. با افزایش دما میزان مواد جامد محلول افزایش پیدا کرد و رنگ آب هویج از نارنجی مایل به زرد به سمت نارنجی مایل به قرمزی پیش رفت(0.05p≤).
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Study of Kinetics of Polyphenol Oxidase Inactivation in Carrot Juice by Ohmic Heating

نویسندگان English

Faezeh Barati 1
Nafiseh Zamindar 2
Seyedramin Rafiaei 1
1 Master Student, Department of Food Science and Technology, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
2 Department of Food Science and Technology-Isfahan ( Khorasgan) Branch Islamic Azad University-Isfahan-Iran
چکیده English

Carrot juice color changes from orange to brown immediately after production. Blanching is a suitable way to preserve and commercialize this product. In this study, an ohmic device was used as a heating source, and polyphenol oxidase enzyme was selected as an indicator of enzyme inactivation sufficiency to color change of carrot juice. Fresh carrot juice was subjected to thermal processing under 3 temperature levels of 70, 80, and 90 degrees of Celsius and 4 time levels of 0, 20, 40 and 60 seconds with a constant voltage of 100 volts and the enzyme inactivation, Brix, pH and color indexes L* , a* and b* were checked. Constant values of reaction rate, activation energy, D-value and Q10 were investigated. The kinetics of inactivation of polyphenol oxidase of carrot juice samples were calculated at 70, 80 and 90 degrees of Celsius. The changes of enzyme inactivation, Brix, pH and a* parameter with increasing temperature and time were significant at 1% probability level by completely random design. The level of enzyme inactivation was also measured by the conventional water bath method and compared with the ohmic method, and the results indicated the greater efficiency of the ohmic method. As the temperature increased, the Brix level increased and the color of carrot juice changed from orange-yellow to orange-red (p≤0.05).

کلیدواژه‌ها English

Carrot juice
Ohmic
polyphenol oxidase.
Sharma, H. K., Kaur, J., Sarkar, B. C., Singh, C., & Singh, B. (2009). Effect of pretreatment conditions on physicochemical parameters of carrot juice. International Journal of Food Science & Technology, 44(1), 1-9. https://doi.org/10.1111/j.1365-2621.2006.01462.x
Tola, Y. B., & Ramaswamy, H. S. (2014). Combined effects of high pressure, moderate heat and pH on the inactivation kinetics of Bacillus licheniformis spores in carrot juice. Food Research International, 62, 50-58. https://doi.org/10.1016/j.foodres.2014.02.006
Jabbar, S., Abid, M., Hu, B., Wu, T., Hashim, M. M., Lei, S., Zhu, X., & Zeng, X. (2014). Quality of carrot juice as influenced by blanching and sonication treatments. LWT - Food Science and Technology, 55(1), 16-21. https://doi.org/10.1016/j.lwt.2013.09.007
Hamid, M., & Khalil ur, R. (2009). Potential applications of peroxidases. Food Chemistry, 115(4), 1177-1186. https://doi.org/10.1016/j.foodchem.2009.02.035
Leong, S. Y., Richter, L.-K., Knorr, D., & Oey, I. (2014). Feasibility of using pulsed electric field processing to inactivate enzymes and reduce the cutting force of carrot (Daucus carota var. Nantes). Innovative Food Science & Emerging Technologies, 26, 159-167. https://doi.org/10.1016/j.ifset.2014.04.004
Buckow, R., Weiss, U., & Knorr, D. (2009). Inactivation kinetics of apple polyphenol oxidase in different pressure–temperature domains. Innovative Food Science & Emerging Technologies, 10(4), 441-448. https://doi.org/10.1016/j.ifset.2009.05.005
Zhang, Y., Liu, X., Wang, Y., Zhao, F., Sun, Z., & Liao, X. (2016). Quality comparison of carrot juices processed by high-pressure processing and high-temperature short-time processing. Innovative Food Science & Emerging Technologies, 33, 135-144. https://doi.org/10.1016/j.ifset.2015.10.012
Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234(6), 1071-1079. https://doi.org/10.1007/s00217-012-1726-7
Liu, X., Gao, Y., Peng, X., Yang, B., Xu, H., & Zhao, J. (2008). Inactivation of peroxidase and polyphenol oxidase in red beet (Beta vulgaris L.) extract with high pressure carbon dioxide. Innovative Food Science & Emerging Technologies, 9(1), 24-31. https://doi.org/10.1016/j.ifset.2007.04.010
Brochier, B., Mercali, G. D., & Marczak, L. D. F. (2016). Influence of moderate electric field on inactivation kinetics of peroxidase and polyphenol oxidase and on phenolic compounds of sugarcane juice treated by ohmic heating. LWT, 74, 396-403. https://doi.org/10.1016/j.lwt.2016.08.001
Gomes, C. F., Sarkis, J. R., & Marczak, L. D. F. (2018). Ohmic blanching of Tetsukabuto pumpkin: Effects on peroxidase inactivation kinetics and color changes. Journal of Food Engineering, 233, 74-80. https://doi.org/10.1016/j.jfoodeng.2018.04.001
Leizerson, S., & Shimoni, E. (2005). Effect of Ultrahigh-Temperature Continuous Ohmic Heating Treatment on Fresh Orange Juice. Journal of Agricultural and Food Chemistry, 53(9), 3519-3524. https://doi.org/10.1021/jf0481204
Ma TingTing Ma, T., Tian ChengRui Tian, C., Luo JiYang Luo, J., Zhou Rui Zhou, R., Sun XiangYu Sun, X., & Ma JinJin Ma, J. Influence of technical processing units on polyphenols and antioxidant capacity of carrot (Daucus carrot L.) juice. 141(3), 1637–1644. https://doi.org/10.1016/j.foodchem.2013.04.121
Zhang, Y., Wang, Y., Zhou, L., & Liao, X. (2010). A comparative study of inactivation of peach polyphenol oxidase and carrot polyphenol oxidase induced by high-pressure carbon dioxide. International Journal of Food Science & Technology, 45(11), 2297-2305. https://doi.org/10.1111/j.1365-2621.2010.02403.x
Fattahi, S., & Zamindar, N. (2021). Evaluation and Modelling of Physicochemical Changes of Tuna Fish Using Immersion Ohmic Thawing Method. Iranian Food Science and Technology Research Journal, 17(1), 43-53. https://doi.org/10.22067/ifstrj.v17i1.82740
Fattahi, S., & Zamindar, N. (2020). Effect of immersion ohmic heating on thawing rate and properties of frozen tuna fish. Food Science and Technology International, 26(5), 453-461. https://doi.org/10.1177/1082013219895884
Icier, F., Yildiz, H., & Baysal, T. (2006). Peroxidase inactivation and colour changes during ohmic blanching of pea puree. Journal of Food Engineering, 74(3), 424-429. https://doi.org/10.1016/j.jfoodeng.2005.03.032
Jakób, A., Bryjak, J., Wójtowicz, H., Illeová, V., Annus, J., & Polakovič, M. (2010). Inactivation kinetics of food enzymes during ohmic heating. Food Chemistry, 123(2), 369-376. https://doi.org/10.1016/j.foodchem.2010.04.047
Saxena, J., Makroo, H. A., & Srivastava, B. (2016). Optimization of time-electric field combination for PPO inactivation in sugarcane juice by ohmic heating and its shelf life assessment. LWT - Food Science and Technology, 71, 329-338. https://doi.org/10.1016/j.lwt.2016.04.015
Kim, Y. S., Park, S. J., Cho, Y. H., & Park, J. (2001). Effects of Combined Treatment of High Hydrostatic Pressure and Mild Heat on the Quality of Carrot Juice. Journal of Food Science, 66(9), 1355-1360. https://doi.org/10.1111/j.1365-2621.2001.tb15214.x
Ortuño, C., Duong, T., Balaban, M., & Benedito, J. (2013). Combined high hydrostatic pressure and carbon dioxide inactivation of pectin methylesterase, polyphenol oxidase and peroxidase in feijoa puree. The Journal of Supercritical Fluids, 82, 56-62. https://doi.org/10.1016/j.supflu.2013.06.005
Brochier, B., Mercali, G. D., & Marczak, L. D. F. (2018). Effect of ohmic heating parameters on peroxidase inactivation, phenolic compounds degradation and color changes of sugarcane juice. Food and Bioproducts Processing, 111, 62-71. https://doi.org/10.1016/j.fbp.2018.07.003
Jamali, S. N., Kashaninejad, M., Amirabadi, A. A., Aalami, M., & Khomeiri, M. (2018). Kinetics of peroxidase inactivation, color and temperature changes during pumpkin (Cucurbita moschata) blanching using infrared heating. LWT, 93, 456-462. https://doi.org/10.1016/j.lwt.2018.03.074
Icier, F. (2010). OHMIC BLANCHING EFFECTS ON DRYING OF VEGETABLE BYPRODUCT. Journal of Food Process Engineering, 33(4), 661-683. https://doi.org/10.1111/j.1745-4530.2008.00295.x
Esmaeili, Y., Zamindar, N., Paidari, S., Ibrahim, Salam A., & Mohammadi Nafchi, A. (2021). The synergistic effects of aloe vera gel and modified atmosphere packaging on the quality of strawberry fruit. Journal of Food Processing and Preservation, 45(12), e16003. https://doi.org/10.1111/jfpp.16003
Gholipour Shahraki, N., Zamindar, N., & Hamidi, S. (2023). Heat Transfer Modeling of Malt Syrup in Semi-rigid Aluminum Based Packaging. Iranian Food Science and Technology Research Journal. https://doi.org/10.22067/ifstrj.2023.78801.1205
Mirmohammadi, R., Zamindar, N., Razavi, S. H., Mirmohammadi, M., & Paidari, S. (2021). Investigation of the possibility of fermentation of red grape juice and rice flour by Lactobacillus plantarum and Lactobacillus casei. Food Science & Nutrition, 9(10), 5370-5378. https://doi.org/10.1002/fsn3.2461