[1] Liu Y, Bu Y, Li J, Liu Y, Liu A, Gong P, et al. Inhibition activity of plantaricin Q7 produced by Lactobacillus plantarum Q7 against Listeria monocytogenes and its biofilm. Fermentation. 2022;8:75.
[2] Vasiee A, Falah F, Mortazavi SA. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. Journal of Applied Microbiology. 2022;133:3201-14.
[3] Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the food industry: health aspects and control methods. Frontiers in microbiology. 2018;9:315815.
[4] Oloketuyi SF, Khan F. Inhibition strategies of Listeria monocytogenes biofilms—Current knowledge and future outlooks. Journal of basic microbiology. 2017;57:728-43.
[5] Xiang Y-Z, Wu G, Zhang Y-P, Yang L-Y, Zhang Y-M, Zhao Z-S, et al. Inhibitory effect of a new bacteriocin RSQ04 purified from Lactococcus lactis on Listeria monocytogenes and its application on model food systems. LWT. 2022;164:113626.
[6] Behbahani BA, Noshad M, Vasiee A, Brück WM. Probiotic Bacillus strains inhibit growth, biofilm formation, and virulence gene expression of Listeria monocytogenes. LWT. 2024;191:115596.
[7] Sofos JN, Geornaras I. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157: H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat science. 2010;86:2-14.
[8] Behbahani BA, Yazdi FT, Mortazavi A, Gholian MM, Zendeboodi F, Vasiee A. Antimicrobial effect of Carboxy Methyl Cellulose (CMC) containing aqueous and ethanolic Eucalyptus camaldulensis L. leaves extract against Streptococcus pyogenes, Pseudomonas aeruginosa and Staphylococcus epidermidis. Archives of Advances in Biosciences. 2014;5.
[9] Economou V, Tsitsos A, Theodoridis A, Ambrosiadis I, Arsenos G. Effects of chitosan coatings on controlling Listeria monocytogenes and methicillin-resistant Staphylococcus aureus in beef and mutton cuts. Applied Sciences. 2022;12:11345.
[10] Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical microbiology reviews. 2015;28:603-61.
[11] Ma A, Neumann N, Chui L. Phenotypic and genetic determination of biofilm formation in heat resistant Escherichia coli possessing the locus of heat resistance. Microorganisms. 2021;9:403.
[12] Ma Y, Ding S, Fei Y, Liu G, Jang H, Fang J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control. 2019;106:106712.
[13] Talapko J, Škrlec I. The principles, mechanisms, and benefits of unconventional agents in the treatment of biofilm infection. Pharmaceuticals. 2020;13:299.
[14] Yazdi FT, Tanhaeian A, Azghandi M, Vasiee A, Behbahani BA, Mortazavi SA, et al. Heterologous expression of thrombocidin-1 in Pichia pastoris: evaluation of its antibacterial and antioxidant activity. Microbial pathogenesis. 2019;127:91-6.
[15] Pontes JTCd, Toledo Borges AB, Roque-Borda CA, Pavan FR. Antimicrobial peptides as an alternative for the eradication of bacterial biofilms of multi-drug resistant bacteria. Pharmaceutics. 2022;14:642.
[16] Zarghami V, Ghorbani M, Bagheri KP, Shokrgozar MA. Melittin antimicrobial peptide thin layer on bone implant chitosan-antibiotic coatings and their bactericidal properties. Materials Chemistry and Physics. 2021;263:124432.
[17] Memariani H, Memariani M. Melittin as a promising anti-protozoan peptide: current knowledge and future prospects. Amb Express. 2021;11:69.
[18] Rouhi A, Yousefi Y, Falah F, Azghandi M, Behbahani BA, Tabatabaei-Yazdi F, et al. Exploring the Potential of Melittin Peptide: Expression, Purification, Anti-Pathogenic Properties, and Promising Applications as a Bio-Preservative for Beef Slices. LWT. 2024:116083.
[19] Alebooye P, Falah F, Vasiee A, Yazdi FT, Mortazavi SA. Spent coffee grounds as a potential culture medium for γ-aminobutyric acid (GABA) production by Levilactobacillus brevis PML1. Lwt. 2023;189:115553.
[20] Ghazanfari N, Fallah S, Vasiee A, Yazdi FT. Optimization of fermentation culture medium containing food waste for l-glutamate production using native lactic acid bacteria and comparison with industrial strain. LWT. 2023;184:114871.
[21] Kim YJ, Yu HH, Song YJ, Park YJ, Lee N-K, Paik H-D. Anti-biofilm effect of the cell-free supernatant of probiotic Saccharomyces cerevisiae against Listeria monocytogenes. Food Control. 2021;121:107667.
[22] Shi C, Sun Y, Liu Z, Guo D, Sun H, Sun Z, et al. Inhibition of Cronobacter sakazakii virulence factors by citral. Scientific Reports. 2017;7:43243.
[23] Nevalainen TJ, Graham GG, Scott KF. Antibacterial actions of secreted phospholipases A2. Review. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2008;1781:1-9.
[24] Amiri EO, Farmani J, Amiri ZR, Dehestani A, Mohseni M. Antimicrobial activity, environmental sensitivity, mechanism of action, and food application of αs165-181 peptide. International Journal of Food Microbiology. 2021;358:109403.
[25] Ahmad Nejhad A, Alizadeh Behbahani B, Hojjati M, Vasiee A, Mehrnia MA. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Scientific Reports. 2023;13:14716.
[26] Herranz C, Driessen AJ. Sec-mediated secretion of bacteriocin enterocin P by Lactococcus lactis. Applied and environmental microbiology. 2005;71:1959-63.
[27] Wu C-L, Hsueh J-Y, Yip B-S, Chih Y-H, Peng K-L, Cheng J-W. Antimicrobial peptides display strong synergy with vancomycin against vancomycin-resistant E. faecium, S. aureus, and wild-type E. coli. International Journal of Molecular Sciences. 2020;21:4578.
[28] Tanhaeian A, Azghandi M, Mousavi Z, Javadmanesh A. Expression of thanatin in HEK293 cells and investigation of its antibacterial effects on some human pathogens. Protein and Peptide Letters. 2020;27:41-7.
[29] Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, et al. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microbial Pathogenesis. 2017;112:57-62.
[30] Lamas A, Arteaga V, Regal P, Vázquez B, Miranda JM, Cepeda A, et al. Antimicrobial activity of five apitoxins from apis mellifera on two common foodborne pathogens. Antibiotics. 2020;9:367.
[31] Zhang K, Yang N, Teng D, Mao R, Hao Y, Wang J. Expression and characterization of the new antimicrobial peptide AP138L-arg26 anti Staphylococcus aureus. Applied Microbiology and Biotechnology. 2024;108:1-18.
[32] Xia X, Song S, Zhang S, Wang W, Zhou J, Fan B, et al. The synergy of thanatin and cathelicidin-BF-15a3 combats Escherichia coli O157: H7. International Journal of Food Microbiology. 2023;386:110018.
[33] Shen S, Sun Y, Ren F, Blair J, Siasat P, Fan S, et al. Characteristics of antimicrobial peptide OaBac5mini and its bactericidal mechanism against Escherichia coli. Frontiers in Veterinary Science. 2023;10:1123054.
[34] Rouhi A, Azghandi M, Mortazavi SA, Tabatabaei-Yazdi F, Vasiee A. Exploring the Anti-Biofilm Activity and Suppression of Virulence Genes Expression by Thanatin in Listeria monocytogenes. LWT. 2024:116084.
[35] Colagiorgi A, Festa R, Di Ciccio PA, Gogliettino M, Balestrieri M, Palmieri G, et al. Rapid biofilm eradication of the antimicrobial peptide 1018-K6 against Staphylococcus aureus: A new potential tool to fight bacterial biofilms. Food Control. 2020;107:106815.
[36] Saidi N, Owlia P, Marashi SMA, Saderi H. Inhibitory effect of probiotic yeast Saccharomyces cerevisiae on biofilm formation and expression of α-hemolysin and enterotoxin A genes of Staphylococcus aureus. Iranian Journal of Microbiology. 2019;11:246.
[37] Ridyard KE, Elsawy M, Mattrasingh D, Klein D, Strehmel J, Beaulieu C, et al. Synergy between Human Peptide LL-37 and Polymyxin B against Planktonic and Biofilm Cells of Escherichia coli and Pseudomonas aeruginosa. Antibiotics. 2023;12:389.
[38] Islam B, Khan AU. Lectins: To combat infections. Protein purification. 2012;1:167-88.
[39] Pizarro-Cerda J, Cossart P. Listeria monocytogenes: cell biology of invasion and intracellular growth. Microbiology spectrum. 2018;6:6.. 05.
[40] Behbahani BA, Noshad M, Falah F. Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microbial pathogenesis. 2019;136:103677.
[41] Upadhyay A, Johny AK, Amalaradjou MAR, Baskaran SA, Kim KS, Venkitanarayanan K. Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes. International Journal of Food Microbiology. 2012;157:88-94.
[42] Silva PM, Napoleão TH, Silva LC, Fortes DT, Lima TA, Zingali RB, et al. The juicy sarcotesta of Punica granatum contains a lectin that affects growth, survival as well as adherence and invasive capacities of human pathogenic bacteria. Journal of functional foods. 2016;27:695-702.
[43] Rouhi A, Falah F, Azghandi M, Behbahani BA, Mortazavi SA, Tabatabaei-Yazdi F, et al. Investigating the effect of Lactiplantibacillus plantarum TW57-4 in preventing biofilm formation and expression of virulence genes in Listeria monocytogenes ATCC 19115. LWT. 2024;191:115669.