[1] Niknezhad, S. V., Asadollahi, M. A., Zamani, A., Biria, D. 2016. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii, International Journal of Biological Macromolecules. 82, 751-756.
[2] Kang, J., Yue, H., Li, X., He, C., Li, Q., Cheng, L., Zhang, J., Liu, Y., Wang, S., Guo, Q. 2023. Structural, rheological and functional properties of ultrasonic treated xanthan gums, International Journal of Biological Macromolecules. 246, 125650.
[3] Nsengiyumva, E. M., Alexandridis, P. 2022. Xanthan gum in aqueous solutions: Fundamentals and applications, International Journal of Biological Macromolecules. 216, 583-604.
[4] Zhu, J., Li, L., Zhang, S., Li, X., Zhang, B. 2016. Multi-scale structural changes of starch-based material during microwave and conventional heating, International Journal of Biological Macromolecules. 92, 270-277.
[5] Salehi, F., Inanloodoghouz, M., Ghazvineh, S. 2023. Influence of microwave pretreatment on the total phenolics, antioxidant activity, moisture diffusivity, and rehydration rate of dried sweet cherry, Food Science & Nutrition. 11, 7870-7876.
[6] Zeng, S., Chen, B., Zeng, H., Guo, Z., Lu, X., Zhang, Y., Zheng, B. 2016. Effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch, Journal of Agricultural and Food Chemistry. 64, 2442-2449.
[7] Chandrasekaran, S., Ramanathan, S., Basak, T. 2013. Microwave food processing-A review, Food Research International. 52, 243-261.
[8] Yang, Q., Qi, L., Luo, Z., Kong, X., Xiao, Z., Wang, P., Peng, X. 2017. Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch, Food Hydrocolloids. 69, 473-482.
[9] Luo, Z., He, X., Fu, X., Luo, F., Gao, Q. 2006. Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches, Starch‐Stärke. 58, 468-474.
[10] Zhong, Y., Tian, Y., Liu, X., Ding, L., Kirkensgaard, J. J. K., Hebelstrup, K., Putaux, J.-L., Blennow, A. 2021. Influence of microwave treatment on the structure and functionality of pure amylose and amylopectin systems, Food Hydrocolloids. 119, 106856.
[11] Yu, X., Huang, S., Yang, F., Qin, X., Nie, C., Deng, Q., Huang, F., Xiang, Q., Zhu, Y., Geng, F. 2022. Effect of microwave exposure to flaxseed on the composition, structure and techno-functionality of gum polysaccharides, Food Hydrocolloids. 125, 107447.
[12] Salehi, F., Razavi Kamran, H., Goharpour, K. 2023. Production and evaluation of total phenolics, antioxidant activity, viscosity, color, and sensory attributes of quince tea infusion: Effects of drying method, sonication, and brewing process, Ultrasonics Sonochemistry. 99, 106591.
[13] Salehi, F., Inanloodoghouz, M., Karami, M. 2023. Rheological properties of carboxymethyl cellulose (CMC) solution: Impact of high intensity ultrasound, Ultrasonics Sonochemistry. 101, 106655.
[14] Salehi, F., Inanloodoghouz, M. 2023. Rheological properties and color indexes of ultrasonic treated aqueous solutions of basil, Lallemantia, and wild sage gums, International Journal of Biological Macromolecules. 253, 127828.
[15] Ghaderi, S., Hesarinejad, M. A., Shekarforoush, E., Mirzababaee, S. M., Karimpour, F. 2020. Effects of high hydrostatic pressure on the rheological properties and foams/emulsions stability of Alyssum homolocarpum seed gum, Food Science & Nutrition. 8, 5571-5579.
[16] Mirzababaee, S. M., Ozmen, D., Hesarinejad, M. A., Toker, O. S., Yeganehzad, S. 2022. A study on the structural, physicochemical, rheological and thermal properties of high hydrostatic pressurized pearl millet starch, International Journal of Biological Macromolecules. 223, 511-523.
[17] González-Mendoza, M. E., Martínez-Bustos, F., Castaño-Tostado, E., Amaya-Llano, S. L. 2022. Effect of microwave irradiation on acid hydrolysis of faba bean starch: physicochemical changes of the starch granules, Molecules. 27, 3528.
[18] Xuewu, Z., Xin, L., Dexiang, G., Wei, Z., Tong, X., Yonghong, M. 1996. Rheological models for xanthan gum, Journal of Food Engineering. 27, 203-209.
[19] Song, K.-W., Kim, Y.-S., Chang, G.-S. 2006. Rheology of concentrated xanthan gum solutions: Steady shear flow behavior, Fibers and Polymers. 7, 129-138.
[20] Koocheki, A., Hesarinejad, M. A., Mozafari, M. R. 2022. Lepidium perfoliatum seed gum: investigation of monosaccharide composition, antioxidant activity and rheological behavior in presence of salts, Chemical and Biological Technologies in Agriculture. 9, 61.
[21] Koocheki, A., Razavi, S. M. A., Hesarinejad, M. A. 2012. Effect of extraction procedures on functional properties of eruca sativa seed mucilage, Food Biophysics. 7, 84-92.
[22] Kumar, Y., Roy, S., Devra, A., Dhiman, A., Prabhakar, P. K. 2021. Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability, LWT. 149, 111632.