Rathi, P., & Rajput, C. S. (2014). Antioxidant potential of grapes (Vitis Vinifera): A review. Journal of Drug Delivery and Therapeutics, 4(2), 102-104. https://doi.org/10.22270/jddt.v4i2.776
Li, J., Zhang, S., Zhang, M., & Sun, B. (2019). Novel approach for extraction of grape skin antioxidants by accelerated solvent extraction: Box–Behnken design optimization. Journal of food science and technology, 56, 4879-4890. https://doi.org/10.1007/s13197-019-03958-5
Carrillo, C., Nieto, G., Martinez-Zamora, L., Ros, G., Kamiloglu, S., Munekata, P. E., ... & Barba, F. J. (2022). Novel approaches for the recovery of natural pigments with potential health effects. Journal of Agricultural and Food Chemistry, 70(23), 6864-6883. https://doi.org/10.1021/acs.jafc.1c07208
Gülcü, M., Ghafoor, K., Al‐Juhaimi, F., Özcan, M. M., Uslu, N., Babiker, E. E., ... & Azmi, I. U. (2020). Effect of grape (Vitis vinifera L.) varieties and harvest periods on bioactive compounds, antioxidant activity, phenolic composition, mineral contents, and fatty acid compositions of Vitis leave and oils. Journal of food processing and preservation, 44(11), e14890. https://doi.org/10.1111/jfpp.14890
Aliakbarlu, J., Khalili,S., Mohammadi S., Naghili, H.(2014) Int. Food Res. J., 21(1), 367
Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Núnez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of agricultural and food chemistry, 53(6), 2111-2117. http://dx.doi.org/10.1021/jf0488110
Carrera, C., Ruiz-Rodríguez, A., Palma, M., & Barroso, C. G. (2012). Ultrasound assisted extraction of phenolic compounds from grapes. Analytica chimica acta, 732, 100-104. https://doi.org/10.1016/j.aca.2011.11.032
Rojas, R., Castro-López, C., Sánchez-Alejo, E. J., Niño-Medina, G., & Martínez-Ávila, G. C. G. (2016). Phenolic Compound Recovery from Grape Fruit and By- Products: An Overview of Extraction Methods. InTech. doi: 10.5772/64821
Novak, I., Janeiro, P., Seruga, M., & Oliveira-Brett, A. M. (2008). Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection. Analytica chimica acta, 630(2), 107-115. https://doi.org/10.1016/j.aca.2008.10.002
Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of agricultural and food chemistry, 57(11), 4988-4994. https://doi.org/10.1021/jf9001439
Ghassempour, A., Heydari, R., Talebpour, Z., Fakhari, A. R., Rassouli, A., Davies, N., & Aboul-Enein, H. Y. (2008). Study of new extraction methods for separation of anthocyanins from red grape skins: analysis by HPLC and LC-MS/MS. Journal of Liquid Chromatography & Related Technologies®, 31(17), 2686-2703. https://doi.org/10.1080/10826070802353247
Mirbagheri, V. S., Alizadeh, E., Yousef Elahi, M., & Esmaeilzadeh Bahabadi, S. (2018). Phenolic content and antioxidant properties of seeds from different grape cultivars grown in Iran. Natural product research, 32(4), 425-429. https://doi.org/10.1080/14786419.2017.1306705
Farhadi, K., Esmaeilzadeh, F., Hatami, M., Forough, M., & Molaie, R. (2016). Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food chemistry, 199, 847-855. https://doi.org/10.1016/j.foodchem.2015.12.083
Caldas, T. W., Mazza, K. E. L., Teles, A. S. C., Mattos, G. N., & Brigida, A. IS, Conte-Junior, CA, Borguini, RG, Godoy, RLO, Cabral, L. MC, & Tonon, RV (2018). Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Industrial Crops and Products, 111, 86-91. https://doi.org/10.1016/j.indcrop.2017.10.012
Maran, J. P., Priya, B., & Manikandan, S. (2014). Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. Journal of Food Science and Technology, 51, 1938-1946. https://doi: 10.1007/s13197-013-1237-y
Formagio, A. S. N., Volobuff, C. R. F., Santiago, M., Cardoso, C. A. L., Vieira, M. D. C., & Pereira, Z. V. (2014). Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants, 3(4), 745-757. https://doi.org/10.3390/antiox3040745
Formagio, A. S. N., Volobuff, C. R. F., Santiago, M., Cardoso, C. A. L., Vieira, M. D. C., & Pereira, Z. V. (2014). Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants, 3(4), 745-757. https://doi.org/10.3390/antiox3040745
Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325
Ghafoor, K., & Choi, Y. H. (2009). Optimization of ultrasound assisted extraction of phenolic compounds and antioxidants from grape peel through response surface methodology. Journal of the Korean Society for Applied Biological Chemistry, 52, 295-300. https://doi.org/10.3839/jksabc.2009.052
Che Sulaiman, I. S., Basri, M., Fard Masoumi, H. R., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1), 1-11. https://doi.org/10.1186/s13065-017-0285-1
Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Mayor, L., Ballesteros, R., Conidi, C., & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Science and Technology, 64(2), 1114-1122. https://doi.org/10.1016/j.lwt.2015.07.024
Cacace, J. E., & Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59(4), 379-389. https://doi.org/10.1016/S0260-8774(02)00497-1
Mohamed Ahmed, I. A., Al-Juhaimi, F., Adisa, A. R., Adiamo, O. Q., Babiker, E. E., Osman, M. A., ... & Elkareem, M. A. (2020). Optimization of ultrasound-assisted extraction of phenolic compounds and antioxidant activity from Argel (Solenostemma argel Hayne) leaves using response surface methodology (RSM). Journal of Food Science and Technology, 57, 3071-3080. https://doi.org/10.1007/s13197-020-04340-6
He, B., Zhang, L. L., Yue, X. Y., Liang, J., Jiang, J., Gao, X. L., & Yue, P. X. (2016). Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food chemistry, 204, 70-76. https://doi.org/10.1016/j.foodchem.2016.02.094
Nile, S. H., Kim, S. H., Ko, E. Y., & Park, S. W. (2013). Polyphenolic contents and antioxidant properties of different grape (V. vinifera, V. labrusca, and V. hybrid) cultivars. BioMed research international, 2013. https://doi.org/10.1155/2013/718065