ارزیابی فعالیت ضدمیکروبی نانولیپوزومهای حاوی نانوذرات اکسیدروی علیه باسیلوس سرئوس(ATCC 11778) و سودوموناس آئروژینوزا (ATCC 9027)

نویسندگان
1 دانش آموخته کارشناسی ارشد فناوری مواد غذایی، دانشگاه بوعلی سینا، همدان
2 دانشیار گروه صنایع غذایی، دانشکده صنایع غذایی، دانشگاه بوعلی سینا، همدان
3 استادیار گروه صنایع غذایی، دانشکده صنایع غذایی، دانشگاه بوعلی سینا، همدان
چکیده
در این پژوهش منحنی زمان کشندگی اثر نانولیپوزوم­های حاوی نانوذرات­ اکسید­روی علیه باسیلوس سرئوس(ATCC 11778) و سودوموناس آئروژینوزا (ATCC 9027) در محیط کشت آزمایشگاهی بررسی شد. دو روش آب پوشانی لایه نازک و حرارتی در تولید نانولیپوزوم­های حاوی نانوذرات اکسید­روی در نسبت­های مختلف لسیتین به نانو ذرات اکسید­روی (5:1، 15:1 و 25:1 وزنی- وزنی) مورد ارزیابی قرار گرفت. مقادیر حداقل غلظت بازدارندگی از رشد (MIC) و حداقل غلظت کشندگی (MBC) نانولیپووزم­های حاوی نانوذرات اکسید روی در مقایسه با نانوذرات اکسید روی بدون پوشش علیه سویه­های باسیلوس سرئوس و سودوموناس آئروژینوزا تعیین گردید. نتایج نشان داد که استفاده از نانوذرات اکسید روی درون پوشانی شده در سامانه­های نانولیپوزومی به صورت معنی­داری قدرت ضد میکروبی آن ها را افزایش داد (05/0p<). نانولیپوزوم حاوی نانوذرات اکسید­روی تولید شده به روش آب پوشانی لایه نازک در مقایسه با روش حرارتی در بیشترین نسبت لسیتین به نانو ذرات اکسید­روی (25:1 وزنی- وزنی)، قدرت ضد میکروبی بالاتری داشتند. بر اساس منحنی های زمان- کشندگی، در حضور نانولیپوزوم­های حاوی نانو ذرات اکسید­روی تولید شده به روش آب پوشانی لایه نازک با نسبت لسیتین به نانوذرات اکسید (25:1 وزنی- وزنی)، طول فاز لگاریتمی باکتری­های باسیلوس سرئوس (8 ساعت) و سودوموناس آئروژینوزا (6 ساعت) به ترتیب در مقادیر حداقل غلظت بازدارندگی به 3 و 3 ساعت و حداقل غلظت کشندگی به 1 و کمتر از یک ساعت کاهش یافت
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Antimicrobial activity evaluation of nano ZnO-loaded nanoliposomes against Bacillus cereus (ATCC 11778) and Pseudomonas aeruginosa (ATCC 9027) Abstract

نویسندگان English

Parvin Souri 1
aryou emamifar 2
Nafiseh Davati 3
1 Bu-Ali Sina University
2 Bu-Ali Sina University
3 Bu-Ali Sina University
چکیده English

In this research, in-vitro time- kill curve effect of nano-ZnO loaded nanoliposomes against Bacillus cereus (ATCC 11778) and Pseudomonas aeruginosa (ATCC 9027) were evaluated. Thin layer hydration sonication and heat methods were evaluated to preparation of nano-ZnO loaded nanoliposomes at different level of lecithin: nano-ZnO ratio (5:1, 15:1, and 25:1 w/w). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of nano-ZnO loaded nanoliposomes and free nano-ZnO against Bacillus cereus and Pseudomonas aeruginosa were determined. Results showed that the encapsulation of nano-ZnO in nanoliposome systems significantly increased their antimicrobial activities. Nano-ZnO loaded nanoliposomes were prepared at the highest ratio of lecithin: nano-ZnO ratio (25:1 w/w) showed higher antimicrobial activity compared to those prepared by heat method. From the time- kill curves, the log phase growth of Escherichia coli (8 hours) and Staphylococcus aureus (7 hours) in the medium containing nano-ZnO loaded nanoliposomes prepared through the thin layer hydration sonication at the highest level of lecithin: nano-ZnO ratio (25:1 w/w) at MIC and MBC values decreased to 3 and 3 hours and to 1 and less than 1 hours, respectively.

کلیدواژه‌ها English

Antimicrobial activity
Nanoliposome
Nano-ZnO
[1] Molayi Kohneshahri S., Taghinejad, J., & Hosainzadegan, H. (2015). A review on structure and virulence of Bacillus cereus. Journal of Laboratory and Diagnosis, 7(29), 51-67 [in Persian].
[2] Yolmeh, M., Habibi-Najafi, M. B., & Najafzadeh, M. (2015). nanotechnologies in food science: applications, recent trends, and future perspectives. Iranian Food Science and Technology Research Journal, 11 (7), 319-324 [in Persian].
[3] Sharafati Chaleshtori, R., Mazroii Arani, N., Alizadeh, E., & Etemadi, A. (2019). Prevalence and antimicrobial resistance pattern of Pseudomonas aeruginosa strains isolated from rose water and herbal distillates in Kashan, 2018, Journal of Food Microbiology, 7(2), 10-17 [in Persian].
[4] Shahbazi, N., Jamshidi, A., & Azizzadeh, M. (2019). The effect of short-time microwave exposure, organic Acid and Salt on Pseudomonas aeruginosa inoculated in veal parts during refrigerated shelf life. Journal of food science and technology (Iran), 88(16), 357-364 [in Persian].
[5] Sim, J. H., Jamaludin, N. S., Khoo, C. H., Cheah, Y. K., Nadiah Binti, S., Halim, A., Seng, H. L., & Tiekink, E.R.T. (2014). In vitro antibacterial and time-kill evaluation of phosphanegold(I) dithiocarbamates, R3Pau [S2CN (iPr)CH2CH2OH] for R = Ph, Cy and Et, against a broad range of Gram-positive and Gram-negative bacteria. Gold Bulletin, 47, 225–236.
[6] Mohammadyari, M. Mozaffari, Z., & Rahimian Zarif, B. (2022). Investigation of the Inhibitory Effect of Zinc nanoparticles on Pseudomonas aeruginosa. The Quarterly Journal of School of Medicine, 46(3), 41-49.
[7] Mirhosseini, M. Kiany Harchegani, M., Kakai Dehkordi, S., & Barzegary Firouzabadi, F. (2013). Comparison of antibacterial effect of ZnO nanoparticles in apple juice at 25 and 4. Quarterly Journal of Experimental Animal Biology, 2 (3), 9-15.
[8] Emamifar, A., & Mohamadizadeh, M. (2020). Influence of sonication and antimicrobial packaging-based nano-ZnO on the quality of fresh strawberry juice during cold storage. Journal of Food Measurement and Characterization, 14 (6), 3280-3290.
[9] Krzepiłko, A., Matyszczuk, K. M., & Święciło, A. (2023). Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on Bacillus cereus. Pathogens (Basel, Switzerland), 12(3), 485.
[10] Ghanbarzadeh, B., Pezeshky, A., Hamishehka, H., & Moghadam, M. (2016) Vitamin A palimitate-loaded nanoliposomes: study of particle size, zeta potential, efficiency and stability of encapsulation. Iranian Food Science and Technology Research Journal, 12(2), 261- 275 [in Persian].
[11] Pormazen, J. (2014). Liposomes or naan lipids: Detection, characterization and preparation methods. Nano World Quarterly, 10 (34), 16-25[in Persian].
[12] Rasti, B., Jinap, S., Mozafari, M. R., & Yazid, A. M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chemistry, 135, 2761-2770.
[13] Dimapilis, E. A. S., Hsu, C. S., Mendoza, R. M. O., Lu, M. C. (2018). Zinc oxide nanoparticles for water disinfection. Sustainable Environment Research, 28 (2), 47-56.
[14] Pelligand, L., Lees, P., Sidhu, P. K., & Toutain, P. L. (2019). Semi-mechanistic modeling of florfenicol time-kill curves and in silico dose fractionation for calf respiratory pathogens. Frontiers in microbiology, 10, 1237.
[15] Cao, D., Shu, X., Zhu, D., Liang, S., Hasan, M., & Gong, S. (2020). Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. Nano Convergence, 7, 14.
[16] Momeni-Javid, Z, Hamishekar, H., Rahmati-Yamchi, M., Zarghami, N., Akbarzadeh, A. & Milani, M. (2017) Evaluation and study of antimicrobial activity of nanoliposomal meropenem against Pseudomonas aeruginosa isolates. Artificial Cells, Nanomedicine, and Biotechnology, 45 (5), 975-980.
[17] Avila, J. G., de Liverant, J. G., Martınez, A., Martınez, G., Munoz, J. L., Arciniegas, A., & de Vivar, A. R. (1999). Mode of action of Buddleja cordata verbascoside against Staphylococcus aureus. Journal of ethnopharmacology, 66(1), 75-78.
[18] Gortzi, O., Lala, S, Chinou, I., & Tsaknis, J. (2007). Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes. Molecules. 12(5), 932–945.
[19] Mendes, C. R., Dilarri, G., Forsan, C. F., & et al. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12, 2658.
[20] Naddafi, S., Soltan Dallal, M. M., Partoazar, A., & Dargahi, Z. (2020). Antibacterial activity of ZnO nanoparticles on standard and isolated strains of Salmonella enteritidis and Bacillus cereus associated with Iranian foods. Journal of Grogan University Medical Science, 22 (2), 82-88 [in Persian].
[21] Didar, Z. (2019). Investigation of Antimicrobial and Synergistic effects of doped Zinc Oxide Nanoparticles against Bacillus cereus. Iranian Food Science and Technology Research Journal, 15(2), 257-266 [in Persian].
[22] Krzepiłko, A., Matyszczuk, K. M., & Święciło, A. (2023). Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on Bacillus cereus. Pathogens (Basel, Switzerland), 12(3), 485.
[23] Mirhosseini M, Barzegari Firouzabadi F. Reduction of Listeria monocytogenes and Bacillus cereus in Milk by Zinc Oxide Nanoparticles. Iranian Journal of Pathology,10(2), 97-104.
[24] Reyhani Poul, S., Yeganeh, S., & Safari, R. (2022). Production of nanoliposomes carrying nisin with chitosan coating and evaluation of physical and antibacterial properties of the product against Bacillus cereus and Staphylococcus aureus. Iranian Food Science and Technology Research Journal, 18(4), 561-573 [in Persian].
[25] Zafari, M., Jafarpour, M., Biazar, E., & Heidari, K. S. (2013). Antimicrobial effects of iron oxide nanoparticles in the presence of dispersing agent. Journal of Pure and Applied Microbiology, 7 (1), 143-149.
[26] Abdulsada, F. M., Hussein, N. N., Sulaiman, G. M., Al Ali, A., & Alhujaily, M. (2022). Evaluation of the Antibacterial Properties of Iron Oxide, Polyethylene Glycol, and Gentamicin Conjugated Nanoparticles against Some Multidrug-Resistant Bacteria. Journal of Functional Biomaterials, 13, 138.
[27] Gharib, A., Faezizadeh, Z., & Godarzee, M. (2012). In vitro and in vivo activities of ticarcillin-loaded nanoliposomes with different surface charges against Pseudomonas aeruginosa (ATCC 29248). DARU Journal of Pharmaceutical Sciences, 20 (1), 41.
[28] Khaghani Boroujeni, A., Madani, H., & Shakeri, S. (2018). Investigation of the antibacterial effect of cement matrix containing zinc oxide nanoparticles on bacillus cereus and pseudomonas aeruginosa. Journal of Water and Wastewater, 29(4), 88-100 [in Persian].