بررسی ویژگی‌های عملکردی، مکانیکی و ساختاری فیلم زیست‌ تخریب‌ پذیر ایزوله پروتئین سویا حاوی نانورس (مونت موریلونیت) و اسانس مریم ‌گلی

نویسندگان
1 دانشیار، گروه مهندسی کشاورزی، دانشگاه فنی و حرفه ‌ای، تهران، ایران
2 کارشناسی ارشد، گروه مهندسی کشاورزی، دانشگاه فنی و حرفه‌ ای، تهران، ایران
3 کارشناسی ارشد، گروه مهندسی کشاورزی، دانشگاه فنی و حرفه‌ ای، تهران، ایران.
چکیده
در این پژوهش فیلم ‏های تولیدی بر پایه پروتئین سویا با دو متغیر نانورس در سه سطح (0، 0/5 و 1%) و اسانس مریم‏ گلی در سه سطح مختلف (ppm 500، 250 و 0) تولید شده و تاثیر این دو متغیر بر خصوصیات عملکردی و مکانیکی و ساختاری فیلم ‏های زیست‏ تخریب‏ پذیر تولیدی مورد بررسی قرار گرفت. نتایج نشان داد که با افزودن درصدهای مختلف از نانورس بر بستر فیلم پروتئین سویا، محتوای رطوبتی، میزان حلالیت، نفوذپذیری نسبت به بخارآب و شفافیت نمونه ‏ها نسبت به نمونه شاهد به طور معنی ‏داری کاهش یافت. این کاهش در شاخص ‏ها با افزایش غلظت به کار رفته از اسانس مریم‏ گلی مشهودتر بود. به طوریکه در بین نمونه ‏های تولیدی، فیلم حاوی 1% نانورس و ppm 500 اسانس مریم‏ گلی، دارای تراوایی نسبت به بخارآب معادل g/m.s.pa 10-11× 32/02 بود. همچنین افزودن نانورس و اسانس مریم‏ گلی سبب افزایش معنی‏ داری در محتوای آنتی ‏اکسیدانی نمونه ‏ها شد و نمونه محتوی 1% نانورس و ppm 500 اسانس مریم ‏گلی با 32/88% بیشترین محتوای آنتی ‏اکسیدانی را داشت. بررسی نتایج طیف‏ سنجی و ریزساختاری فیلم ‏های بدست آمده نیز بیانگر تعامل مناسب بین نانوذره و اسانس با بستر پروتئین سویا و ایجاد پیوندهای قوی و جدید می ‏باشد. نتایج بدست آمده نشان داد که افزودن نانورس و اسانس مریم‏ گلی می ‏تواند اثرات مثبتی بر خصوصیات فیزیکی و ساختاری فیلم ایزوله پروتئین سویا داشته باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Functional, Mechanical and Structural Characteristics of Soy Protein Isolate Biodegradable Film Containing Nanoclay (Montmorillonite) and Salvia officinalis Essential oil

نویسندگان English

Roghiye Ashrafi Yorghanlu 1
mahla pirouzifard 2
Haleh Hemmati 3
1 Associate Professor, Department of Agricultural Engineering, Technical and Vocational University (TVU), Tehran, Iran
2 MSc, Department of Agricultural Engineering, Technical and Vocational University (TVU), Tehran, Iran
3 MSc, Department of Agricultural Engineering, Technical and Vocational University (TVU), Tehran, Iran
چکیده English

In this research, production films based on soy protein were produced with two variables of nanoclay at three levels (0, 0.5 and 1%) and Salvia officinalis Essential oil at three different levels (0, 250 and 500 ppm) and the effect of this Two variables were investigated on the functional, mechanical and structural characteristics of the produced biodegradable films. The results showed that by adding different percentages of nanoclay on the soy protein film substrate, the moisture content, solubility, permeability to water vapor and transparency of the samples decreased significantly compared to the control sample. This decrease in indicators was more evident with increasing concentration of Salvia officinalis Essential oil. Among the production samples, the film containing 1% nanoclay and 500 ppm of Salvia officinalis Essential oil had a water vapor permeability of 32.02´10-11 g/m.s.pa. Also, the addition of nanoclay and Salvia officinalis essential oil caused a significant increase in the antioxidant content of the samples, and the sample containing 1% nanoclay and 500 ppm of Salvia officinalis essential oil had the highest antioxidant content with 32.88%. Examining the results of spectroscopy and microstructure of the obtained films also shows the proper interaction between nanoparticle and essential oil with soy protein substrate and creating strong and new bonds. The obtained results showed that the addition of nanoclay and Salvia officinalis essential oil can have positive effects on the physical and structural properties of soy protein isolate film.

کلیدواژه‌ها English

Biodegradable film
Nanoclay
Salvia officinalis essential oil
Soy protein isolate
1) Jung, H. Han. (2013), New technologies in food packaging, Mardafkan, N., & Golzadeh, H. Serva Publications, 550.
2) Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., ... & Zhang, Q. (2015). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 43, 427-435.
3) Li, Y., Chen, H., Dong, Y., Li, K., Li, L., & Li, J. (2016). Carbon nanoparticles/soy protein isolate bio-films with excellent mechanical and water barrier properties. Industrial Crops and Products, 82, 133-140.
4) Picard, E., Gauthier, H., Gérard, J. F., & Espuche, E. (2007). Influence of the intercalated cations on the surface energy of montmorillonites: consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites. Journal of Colloid and Interface Science, 307(2), 364-376.
5) Rhim, J. W., & Kim, Y. T. (2014). Biopolymer-based composite packaging materials with nanoparticles. In Innovations in food packaging (pp. 413-442). Academic Press.
6) Ghanbarzadeh, B., PEZESHKI, N. A., & Almasi, H. (2011). Antimicrobial edible films for food packaging, Journal of Food Science and Technology, 8(1), 123-135.
7) Behnam, B., & Aliakbarlou, J. (2013). Antioxidant effects of Zataria multiflora and Mentha longifolia essential oils on chicken meat stored at 4 °C, Journal of Food Industry Research, 23(4), 533-543.
8) Zargari, Ali. (2015). Medicinal Plants, Volume 4, Issue 8, University of Tehran Publications, Tehran, 65-61.
9) Wang, Y., Zhang, Q., Zhang, C. L., & Li, P. (2012). Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes. Food Chemistry, 132(1), 419-427.
10) Rhim, J. W., Lee, S. B., & Hong, S. I. (2011). Preparation and characterization of agar/clay nanocomposite films: the effect of clay type. Journal of food science, 76(3), 40-48.
11) Peng, Y., Wu, Y., & Li, Y. (2013). Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules, 59, 282-289.
12) Casariego, A., Souza, B., Cerqueira.m M., Texeira, J., Cruz, Diaz, R., & Vicente, A. (2009). Chitosan-clay films properties as affected by biopolymer and clay micro/nanoparticales concentration. Food Hydrocolloids, 23, 1895- 1902.
13) Byun, Y., Kim, Y. T., & Whiteside, S. (2010). Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering, 100(2), 239-244.
14) Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., & Miraki, R. (2013). Plasticizers forzein: their effect on tensile properties and water absorption of zein films. Cereal chemistry Journal, 81, 1-5.
15) Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting, 13(4), 287-298.
16) Shifeng, Z., Changlei, X., Youming, D., Yutao, Y., & ianzhang, L. (2016). Soy protein isolate-based films reinforced by surface modifiedcellulose Nano crystal. Industrial Crops and Products, 80, 207–213.
17) Pirouzifard, M., Ashrafi Yorghanlu, R., & Pirsa, S. (2020). Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties, Journal of Thermoplastic Composite Materials, 33(7), 1-23.
18) Ghadermarzi, R., Karamat, J., & Goli, S. M. (2015). Effect of Oregano Essential Oil on Properties of Hydroxypropylmethylcellulose-Based Edible Film, Journal of new food technologies, 2(7), 61-74.
19) Salarbashi, D., Mortazavi, A., Shahidi Nougabi, M., Fazli Bazaz, B., Sadaqat, N., Ramezani, M., & Shahabi, A. (2016). Physicochemical and microbial properties of prepared films containing nano titanium oxide based on soybean flour polysaccharide, Bi-monthly scientific research magazine Tolo Health, 15(4), 91-103.
20) Song, N.B., Jo, W.S., Song, H.Y., Chung, K.S., Won, M., & Song, K.B. (2013). Effect of plasticizers and nano-clay content on physical properties of chicken feather protein composite films. Food Hydrocolloid, 31, 340-345.
21) Ghasemlou, M., Khaksar, R., Mardani, T., Shahniya, M., & Rashedi, H. (2012). Preparation and evaluation of biodegradable anti-microbial packaging based on corn starch. Iranian Journal of Nutrition and Food Technology, 7(5), 115-123.
22) Ashrafi Yorghanlu, R., Hemmati, H., Mohtarami, F., & Moghaddas Kia, E. (2018). Evaluation of Functional, Mechanical and Structural Properties of Film Based Sodium Caseinate-Nanoclay and Echinophora Platyloba Essential Oil, Journal of Food Science and Technology, 81(15), 443-455.
23) Zahedi, Y., Ghanbarzadeh, B., & Sedaghat, N. (2010). Physical properties of edible emulsified films based on pistachio globulin protein and fatty acids. Journal of Food Engineering, 100, 102-108.
24) Sothornvit, R., Rhim, j., & Hong, s., (2009). Effect of Nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films, Journal of Food Engineering, 91, 468–473.
25) Alizadeh. V., Barzegar. H., Nasehi. B., & Samavati. V. (2018). Development of a chitosan-montmorillonite nanocomposite film containing Satureja hortensis essential oil. Iranian Food Science and Technology Research Journal, 13(6), 131-143.
26) Perez-Gago, M. B. & Krochta, J. M. (2001). Lipid particle size effect on water vapor permeability and mechanical properties of whey protein-beeswax emulsion films. Journal of Agriculture and Food Chemistry, 49, 996-1002.
27) Abdollahi. M., Rezaei, M., & Farzi, G. (2012). A novel bio nanocomposite film incorporating rosemary essential oil and nanolay into chitosan. Journal of food Engineering, 111, 343-350.
28) Rhim, J. W. & Kirn. Y. T. (2014). Chapter 17 – Biopolymer-Based Composite Packaging Materials with Nanoparticles. In “lnnovalions in Food Packaging (Second Edition)” (.I. H. Han, ed.). Academic Press. San Diego.
29) Atares, L., Jesus, C. D., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99, 384-391.
30) Pires, C., Ramos, C., Teixerira, B., & Batista, M. (2013). Hake protein edible films incorporated with essential oils: physical, mechanical, antioxidant and antimicrobial properties. Food Hydrocolloid, 30, 224-231.
31) Miliauskasa, G., Venskutonisa, P. R., & Beek, T. A.V. (2004). Screening of Radical Scavenging Activity of Some Medicinal and Aromatic Plant Extracts. Food Chemistry, 85, 231-237.
32) Tel, G., Ozturk, M., Duru, M. E., Harmandar, M., & Topcu, G. (2010). Chemical composition of the essential oil and hexane extract of Salvia chionantha and their antioxidant and anticholinesterase activities. Food and Chemical Toxicology, 48, 3189-3193.
33) Moradi, M., Tajik, H., Razavi Rohani., Oromiehie, A., Malekinejad, H., Aliakbarlu, & Hadian, (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT - Food Science and Technology. 46, 477–484.
34) Zolfi, M., Khodaiyan, F., Mousavi, M. & Hashemi, M. (2014). The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation, Carbohydrate polymers, 109, 118-125.
35) Noshirvani, N., Ghanbarzadeh, B., Rezaei Mokarram, R., & Hashemi, M. (2018). Antimicrobial, Antioxidant and Physical Properties of Chitosan-Carboxymethyl Cellulose-Oleic Acid Based Films Incorporated with Cinnamon Essential Oil, Iranian Journal of Nutrition Sciences & Food Technology, 13(1), 135-148.
36) Oleyayi, Amir., Ghanbarzadrh, Babak., Moayedi, Aliakbar., Poursani, Parisa., & Khatameyan, Masomeh. (2015). Production and investigation of nanostructures and physicochemical properties of biocomposite starch film containing TiO2 nanoparticles. Quarterly Journal of Modern Food Technology, 2(8), 87-101.
37) Chen, M. C., Yeh, G. H., & Chiang, B. H. (1996). Antimicrobial, Mechanical and Moisture barrier properties of low pH whey protein based edible films containing a preservative. Journal of Food Processing and Preservation, 20, 379-390.
38) Huang. M., & Yu, I. (2006). Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites. Journal of applied polymer science, 99, 170-176.
39) Kumar, P., Sandeep, K. P., Alavi, S., Truong, V.D., & Gorga, R. (2010). Effect Type and Content of Modified Montmorillonite on the structure and properties of B Nanocomposite Films Based on Soy Protein Isolat and Montmorillonite. Journal Food Science, 75, 46-56.
40) Jamshidi Kaljahi, N., Ghanbarzadeh, B., DehghannyaM J., Entezami, A. A., & Sowti khiyabani, M. (2014). Plasticized Starch Based Bionanocomposites Containing Cellulose Nanowhiskers and Titanium Dioxide Nanoparticles: Study of Structure and Water Vapor Permeability, Iranian Journal of Polymer Science & Technology, 27(3), 192-179.
41) Jimenez, A., Fabra, M. J., Talens, P., & Chialt, A. (2012). Effect of sodium caseinate on properties and ageing ehavior of corn starch. Food Hydrocolloids, 29, 265-271.
42) Kowalczyk, D., & Baraniak, B. (2011). Effect of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. Journal of applied polym scence, 99, 170-176.
43) Pereda, M., Amica, G., Racez, I., & Marcovich, N.E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 103, 76-83.