افزایش عمر نگهداری جوانه گندم به کمک صمغ‌های گوار، کربوکسی متیل سلولز و فارسی به روش درون‌پوشانی از نوع خشک کن انجمادی

نویسندگان
گروه علوم و صنایع غذایی، واحد اصفهان (خوراسگان،) دانشگاه آزاد اسلامی، اصفهان، ایران
چکیده
جوانه گندم، جنین دانه گندم است و حاوی مقدار زیادی توکوفرول، پروتئین و اسیدهای چرب با کیفیت بالا می­باشد. جوانه گندم دارای فعالیت آنزیمی قابل توجهی است که ماندگاری آن را محدود می­کند. جوانه­های گندم به طور کلی در طول آسیاب دانه­های گندم حذف می­شوند تا ماندگاری آرد افزایش یابد و از ایجاد طعم نامطلوب در آرد جلوگیری شود. هدف از این مطالعه، افزایش عمر نگهداری جوانه گندم به کمک صمغ­های گوار، کربوکسی متیل سلولز و فارسی به روش درون­پوشانی از نوع خشک­کن انجمادی بود. در پژوهش حاضر، از نسبت 1 : 05/0 برای مخلوط­های مالتودکسترین: صمغها استفاده شد و آزمون­های فیزیکوشیمیایی و میکروبی روی ­نمونه­ها در دوره نگهداری 360 روزه انجام شد. داده­های بدست آمده، در قالب طرح کاملا تصادفی تجزیه و تحلیل گردید. میانگین­ها با آزمون دانکن در سطح معنی داری یک درصد مقایسه شدند. نتایج حاکی از کاهش مقادیر پراکسید در طی روزهای نگهداری در تیمار صمغ کربوکسی متیل سلولز بود. صمغ فارسی و مالتودکسترین نیز دارای اثر کاهشی بر مقادیر آنیزیدین و توتوکس بودند. مقادیر مخمر در تیمارهای مالتودکسترین، فارسی، کربوکسی متیل سلولز و گوار روند کاهشی و مقادیر شمارش کلی باکتری در تیمارهای صمغ فارسی، گوار، مالتودکسترین و کربوکسی متیل سلولز روندی افزایشی را نشان داد. بررسی درون­پوشانی جوانه گندم جهت افزایش ماندگاری این محصول نشان داد که کارایی این تکنیک به نوع مواد دیواره به عنوان یک پارامتر اصلی بستگی دارد و استفاده از صمغ­ها و مواد مختلف در ترکیب با سایر صمغ­ها شاید بتواند در بهبود ویژگی­های فیزیکوشیمیایی کپسول­های تولید شده موثر باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Prolonging the shelf life of wheat germ with Guar, Carboxymethyl cellulose and Persian gum by freeze-drying encapsulation method

نویسندگان English

Yasamin Khayambashi
Mohammad Goli
Nafiseh Zamindar
Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده English

Wheat germ is the embryo of the wheat grain and is abundant in tocopherol, protein, and omega-3 fatty acids. Wheat germ has high enzyme activity, which reduces its shelf life. Wheat germs are often eliminated during the milling of wheat grains to extend the shelf life of the flour and avoid the formation of an unpleasant taste in the flour. The goal of this study was to enhance the storage life of wheat germ by freeze-drying encapsulation using guar, carboxymethyl cellulose, and Persian gums. The current study employed a 1:0.05 ratio for maltodextrin: different gums mixes, and physicochemical and microbiological tests were performed on the samples throughout a 360-day storage period. The collected data was evaluated using a completely random design. SPSS was used for statistical analysis of the samples, and averages were compared using Duncan's test at a significance level of 1%. The results showed that the amount of peroxide in CMC gum treatment decreased with time. Anisidine and totox levels were also reduced by Persian gum and maltodextrin. The amount of yeast in maltodextrin, Persian, CMC, and guar treatments decreased, whereas total bacterial count values increased in Persian gum, guar, maltodextrin, and CMC treatments. Investigating wheat germ encapsulation to extend product shelf life revealed that the efficacy of this technology is dependent on the kind of wall material as a primary parameter. The mixing of various gums and materials with other gums may be useful in increasing the physicochemical characteristics of the resulting microcapsules.

کلیدواژه‌ها English

Encapsulation
Wheat germ
Freeze drying
Oxidation indices
1. Almansouri, M., Kinet, J.M., and Slutts, N. (2001). Effect of salt & osmotic stresses on germination in durum wheat. Plant and Soil, 231:234-245.
2. Engelsen, M.M., and Hansen, A. (2009). Tocopherol and tocotrienol content in commercial wheat mill streams. Cereal Chemistry Journal, 86(5):499-502.
3. Zhokhov, S.S., Broberg, A., Kenne, L., and Jastrebova, J. (2010). Content of antioxidant hydroquinones substituted by b-1,6-linked oligosaccharides in wheat milled fractions, flours and breads. Food Chemistry, 121(3):645-652.
4. Dunford, N.T. (2009). Wheat germ oil. gourmet and health-promoting specialty oils. AOCS Press, 359-376.
5. Li, B., Zhao, L., Chen, H., Sun, D., Deng, B., Li, J., Liu, Y., and Wang, F. (2016). Inactivation of lipase and lipoxygenase of wheat germ with temperature-controlled short wave infrared radiation and its effect on storage stability and quality of wheat germ oil. PLOS One, 11(12):e0167330.
6. Capitani, M., Mateo, C.M., and Nolasco, S.M. (2011). Effect of temperature and storage time of wheat germ on the oil tocopherol concentration. Brazilian Journal of Chemical Engineering, 28(2):243-250.
7. Srivastava, A.K., Sudha, M.L., Baskaran, V., and Leelavathi, K. (2006). Studies on heat stabilized wheat germ and its influence on rheological characteristics of dough. European Food Research and Technology, 224(3):365-372.
8. Geng, P., Harnly, J.M., and Chen, P. (2015). Differentiation of whole grain from refined wheat ( T. aestivum ) flour using lipid profile of wheat bran, germ, and endosperm with UHPLC-HRAM mass spectrometry. Journal of Agricultural and Food Chemistry, 63(27):6189-6211.
9. Iranian National Standardization Organization, Standard No. 3-10899. (2013). Microbioligy of food and animal feeding stuffs - enumeration of Yeast and mould-Colony count techni in products with water activity Less than or equal to 0/60. First edition.
10. Agregan, R., Munekata, P.E., Dominguez, R., Carballo, J., Franco, D., and Lorenzoa, J.M. (2017). Proximate composition, phenolic contentand in vitro antioxidant activity of aqueous extracts of the sea weeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions. Food Research International, 99 (3):986-994.
11. Iranian National Standardization Organization, Standard No. 4093. (2007). Measurement of anisidine number. First revision.
12. Iranian National Standardization Organization, Standard No. 4178. (1998). Measurement of acidity in edible oils and fats. First Edition.
13. Iranian National Standardization Organization, Standard No. 10494. (2016). Vegetable oils and fats - measurement of 2- thiobarbituric acid by direct method. First edition.
14. Hosseini, H., Ghorbani, M., Jafari, S.M., and Mahoonak, S.A. (2019). Encapsulation of EPA and DHA concentrate from Kilka fish oil by milk proteins and evaluation of its oxidative stability. Journal of Food Science and Technology,56 (1):59-70.
15. Ghorbani, M., and Hosseini, H. (2017). Determination of water activity corresponding to the proper quality of peanut kernels. Journal of Food Processing and Preservation, 41(6):e13260.
16. Shah, S.W.A., Jahangir, M., Qaisar, M., Khan, S.A., Mahmood, T., Saeed, M., and Liaquat M. (2015). Storage stability of kinnow fruit (Citrus reticulata) as affected by CMC and guar gum-based silver nanoparticle coatings. Molecules, 20(12):22645-22661.
17. Ballesteros, L.F., Ramirez, M.J., Orrego, C.E., Teixeira, J.A., and Mussatto, S.I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237:623-631.
18. Maleki, M., and Mohsenzadeh, M. (2021). Carboxymethyl cellulose film optimized with Persian gum, Titanium dioxide nanoparticles, and Fennel essential oil: Investigation of chemical, antimicrobial, and sensory properties on Rainbow Trout fillet. Research Square, 1-17.
19. Sarkar, S., and Singhal, R.S. (2011). Esterification of guar gum hydrolysate and gum Arabic with n-octenylsuccinic anhydride and oleic acid and its evaluation as wall material in microencapsulation. Carbohydrate Polymers, 86:1723-1731.
20. Sarkar, S., Gupta, S., Variyar, P.S., Sharma, A., and Singhal, R.S. (2012). Irradiation depolymerized guar gum as partial replacement of gum Arabic for microencapsulation of mint oil. Carbohydrate Polymers, 90(4):1685-1694.
21. Musta, R., Nurliana, L., Harbi, H., and Nurjana, S. (2021). Effects of microencapsulation on antifungal activity of bombana clove oil (Syzigium aromaticum L.) against Candida albicans. AIP Conference Proceedings 2360. https://doi.org/10.1063/5.0059567.