ساخت بسته بندی فعال با استفاده از اسانس اکالیپتوس و اسانس نعنا فلفلی به روش الکتروریسی: بررسی ویژگی‫ها و خاصیت ضد باکتریایی‬‬‬

نویسندگان
1 گروه علوم و صنایع غذایی ، دانشکده کشاورزی ، دانشگاه زابل، زابل، ایران
2 گروه علوم و صنایع غذایی ، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران
چکیده
هدف از انجام این تحقیق، تقویت خاصیت ضد میکروبی نانوالیاف فعال حاوی اسانس اکالیپتوس با استفاده از غلظت های مختلف اسانس نعناع فلفلی برای استفاده به عنوان بستهبندی فعال میباشد. نانوالیاف حاوی مخلوط اسانس اکالیپتوس (10 درصد) و اسانس نعناع فلفلی ( غلظت‌های 0، 2.5، 5، 10 درصد (حجمی/حجمی)) تولید شد. نتایج SEM و Image-J نشان داد که بارگذاری اسانس، قطر الیاف الکتروریسی شده را از 200 به 400 نانومتر افزایش داد. تصاویر SEM نشان داد که مورفولوژی الیاف الکتروریسی شده به شکل لولهای است. XRD برای مطالعه ساختار فیزیکی الیاف الکتروریسی شده به کار گرفته شد و دیفراکتوگرامهای XRD نشان میدهد که افزودن اسانس به زئین، منجر به تغییر ساختار کریستالی زئین نشده است. ترموگرامهای TGA نشان داد که بارگذاری اسانس باعث افزایش پایداری حرارتی الیاف الکتروریسی شده، گردید. طیف FTIR برهمکنش بین الیاف الکتروریسی شده و اسانس را نشان می دهد. آزمایش ضد میکروبی به روش انتشار دیسک انجام شد و نتایج نشان داد که پوشش فیبری حاوی اسانس از رشد استافیلوکوکوس اورئوس و اشریشیا کلی جلوگیری نموده. با توجه به نتایج این تحقیق، الیاف حاوی مخلوط اسانسهای اکالیپتوس و نعناع فلفلی را می توان به عنوان یک بسته بندی فعال برای استفاده در بستهبندی مواد غذایی مختلف مانند پنیر، گوشت و برخی محصولات غذایی دیگر در نظر گرفت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Fabrication of active packaging using eucalyptus and peppermint essential oil by electrospinning technique: study the characterization and antibacterial properties

نویسندگان English

Zahra Sargazi 1
mohammad amin Miri 2
Mohammadali Najafi 1
1 Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran.
2 Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran.
چکیده English

The purpose of this research is to strengthen the antimicrobial properties of active nanofibers containing eucalyptus essential oil by using different concentrations of peppermint essential oil for use as active packaging. Nanofibers containing a mixture of eucalyptus essential oil (10%) and peppermint essential oil (concentrations of 0, 2.5, 5, 10% (v/v)) were produced. SEM and Image-J results showed that the loading of essential oil increased the diameter of electrospun fibers from 200 to 400 nm. SEM images showed that the morphology of electrospun fibers is tubular. XRD was used to study the physical structure of electrospun fibers and XRD diffractograms show that adding essential oil to zein did not change the crystalline structure of zein. TGA thermograms showed that the loading of essential oil increased the thermal stability of electrospun fibers. FTIR spectrum shows the interaction between electrospun fibers and the essential oil. Antibacterial test was done by disc diffusion method and the results showed that the fibrous coating containing essential oil prevented the growth of staphylococcus aureus and escherichia coli. According to the results of this research, fibers containing a mixture of eucalyptus and peppermint essential oils can be considered as an active packaging for use in packaging different food products such as cheese, meat and some other food products.


کلیدواژه‌ها English

Mixture of essential oils
Electrospinning
Zein
1. Aman Mohammadi M, Ramezani S, Hosseini H, et al (2021) Electrospun Antibacterial and Antioxidant Zein/Polylactic Acid/Hydroxypropyl Methylcellulose Nanofibers as an Active Food Packaging System. Food Bioprocess Technol. 14:1529–1541
2. Jiang S, Chen Y, Duan G, et al (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9:2685–2720. https://doi.org/10.1039/C8PY00378E
3. Ghasemi M, Miri MA, Najafi MA, et al (2022) Encapsulation of Cumin essential oil in zein electrospun fibers: Characterization and antibacterial effect. J Food Me::as char::act. https://doi.org/10.1007/s11694-021-01268-z
4. Miri MA, Ghorani B, Miri HR (2019) Electroencapsulation: Fundamentals and applications in food industry. JFST 16:1–21
5. Antunes MD, da Silva Dannenberg G, Fiorentini ÂM, et al (2017) Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int J Biol Macromol 104:874–882. https://doi.org/10.1016/j.ijbiomac.2017.06.095
6. Hosseini F, Miri MA, Najafi M, et al (2021) Encapsulation of rosemary essential oil in zein by electrospinning technique. J Food Sci 64:1750-3841.15876. https://doi.org/10.1111/1750-3841.15876
7. Rahmatinia N, Aran M, Miri MA, Ramezan D (2022) Electrospun zein nanofibers as a nanocarrier of Eucalyptus essential oil: Characterization, and antimicrobial properties. Food Sci Technol 18:81–91. https://doi.org/10.52547/fsct.18.121.7
8. Beyki M, Zhaveh S, Khalili ST, et al (2014) Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 54:310–319
9. Tabatabaei Yazdi F, Alizadeh Behbahani B, Vasiee AR, et al (2018) Evaluation antioxidant activity, phytochemical constituents and antimicrobial of Mentha Piperita essential oil on some infectious and poisonous microorganisms. Food Sci Technol [Persian] 15:67–76
10. Aghaei Z, Ghorani B, Emadzadeh B, et al (2020) Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 111:107065. https://doi.org/10.1016/j.foodcont.2019.107065
11. Iranmanesh S, Aran M, Miri MA, Pirnia M (2022) Preparation and Characterization of Zein Electrospun Fibers for Nano Encapsulation of Ajowan (Trachyspermum copticum L.) Essential Oil. J Essent Oil-Bearing Plants 25:219–233. https://doi.org/10.1080/0972060X.2022.2068970
12. Rezaei M, Aran M, Amani AM, et al (2021) Use of electrospun chitosan nanofibers as nanocarriers of Artemisia sieberi extract: Evaluation of properties and antimicrobial effects. J Food Sci Technol 18:323–334. https://doi.org/10.29252/fsct.18.03.27
13. Yao ZC, Chang MW, Ahmad Z, Li JS (2016) Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. J. Food Eng. 191:115–123
14. Ramakrishna S, Fujihara K, Teo WE, et al (2005) An introduction to electrospinning and nanofibers
15. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer (Guildf). 46:6128–6134
16. Nayak R, Padhye R, Kyratzis IL, et al (2013) Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene. Text Res J 83:606–617. https://doi.org/10.1177/0040517512458347
17. Ardekani NT, Khorram M, Zomorodian K, et al (2019) Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int J Biol Macromol 125:743–750. https://doi.org/10.1016/j.ijbiomac.2018.12.085
18. Teilaghi S, Movaffagh J, Bayat Z (2020) Preparation as Well as Evaluation of the Nanofiber Membrane Loaded with Nigella sativa Extract Using the Electrospinning Method. J Polym Environ 28:1614–1625. https://doi.org/10.1007/s10924-020-01700-3
19. Ullah S, Hashmi M, Khan MQ, et al (2019) Silver sulfadiazine loaded zein nanofiber mats as a novel wound dressing. RSC Adv 9:268–277. https://doi.org/10.1039/C8RA09082C
20. Yang SB, Rabbani MM, Ji BC, Han D (2016) Optimum Conditions for the Fabrication of Zein / Ag Composite Nanoparticles from Ethanol / H 2 O Co-Solvents Using Electrospinning. Nanomaterials 6:1–11. https://doi.org/10.3390/nano6120230
21. Yang SB, Rabbani MM, Ji BC, et al (2016) Optimum Conditions for the Fabrication of Zein/Ag Composite Nanoparticles from Ethanol/H2O Co-Solvents Using Electrospinning. Nanomaterials 6
22. Feng Y, Lee Y (2017) Microfluidic fabrication of hollow protein microcapsules for rate-controlled release. RSC Adv. 7:49455–49462
23. Xu Q, Bai Z, Ma J, et al (2021) Effect of different drying methods on zein-based microcapsules loaded with Artemisia argyis essence obtained by anti-solvent precipitation. J Appl Polym Sci 138:50921. https://doi.org/https://doi.org/10.1002/app.50921
24. Roshanghias A, Sodeifian G, Javidparvar AA, Tarashi S (2022) Construction of a novel polytetrafluoroethylene-based sealant paste: The effect of polyvinyl butyral (PVB) and nano-alumina on the sealing performance and construction formulations. Results Eng 14:100460. https://doi.org/10.1016/J.RINENG.2022.100460
25. Javidparvar AA, Naderi R, Ramezanzadeh B (2019) Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection. Compos Part B Eng 172:. https://doi.org/10.1016/j.compositesb.2019.05.055
26. Ferreira-Villadiego J, García-Echeverri J, Vidal M V, et al (2018) Chemical Modification and Characterization of Starch Derived from Plantain (Musa paradisiaca) Peel Waste, as a Source of Biodegradable Material. In: CHEMICAL ENGINEERING TRANSACTIONS
27. Meyer N, Rivera LR, Ellis T, et al (2018) Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition. Coatings 8
28. De Figueredo GP, De Carvalho AFM, De Araújo Medeiros RLB, et al (2017) Synthesis of MgAl2O4 by Gelatin Method: Effect of Temperature and Time of Calcination in Crystalline Structure. Mater Res 20:254–259. https://doi.org/10.1590/1980-5373-MR-2017-0105
29. Akbarzadeh S, Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G (2020) A green assisted route for the fabrication of a high-efficiency self-healing anti-corrosion coating through graphene oxide nanoplatform reduction by Tamarindus indiaca extract. J Hazard Mater 390:122147. https://doi.org/10.1016/j.jhazmat.2020.122147
30. Javidparvar AA, Naderi R, Ramezanzadeh B (2020) L-cysteine reduced/functionalized graphene oxide application as a smart/control release nanocarrier of sustainable cerium ions for epoxy coating anti-corrosion properties improvement. J Hazard Mater 389:122135. https://doi.org/10.1016/J.JHAZMAT.2020.122135
31. Aliyev E, Filiz V, Khan MM, et al (2019) Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials 9:1180. https://doi.org/10.3390/nano9081180