1.Chockry Barbana and Joyce Irene Boye. 2012. In vitro protein digestibility and physio-chemical properties of flours and protein concentrates from two varieties of lentil (Lens culinaris). Food Function 4: 310.
2. McDermott, J., & Wyatt, A. J. 2017. The role of pulses in sustainable and healthy food systems. Annals of the New York Academy of Sciences 1392(1): 30–42.
3.Tosh, S. M., & Yada, S. 2010. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International 43(2): 450–460
4. Hall, C., Hillen, C., & Garden Robinson, J. 2017. Composition, nutritional value, and health benefits of pulses. Cereal Chemistry 94(1): 11–31
5.Amarowicz, R., Pegg, R.B. 2008. Legumes as a source of natural antioxidants. European Journal of Lipid Science and Technology 110: 865-878.
6. Khan, I., Tabassum, F., Khan, A. 2008. Glycemic indices and glycemic loads of various types of pulses. Pakistan Journal of Nutrition 7(1): 104-108.
7. Jiayi Li, Liying Li, Jianfeng Zhu, and Yongfeng Ai. 2021. Utilization of maltogenic α-amylase treatment to enhance the functional properties and reduce the digestibility of pulse starches. Food Hydrocolloids 120: 106932
8. Narpinder Singh. 2017. Pulses: an overview. Journal of Food Science and Technology. 54(4): 853–857.
9. Hussain Shah, Syed, and Aleem, Ambreen. 2023. "Investigations of Plausible Pharmacodynamics Supporting the Antispasmodic, Bronchodilator, and Antidiarrheal Activities of Berberis Lycium Royle. Via in Silico, in Vitro, and in Vivo Studies." Journal of Ethnopharmacology 305: 116115.
10.Hangen, L., Bennink, M.R. 2002. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Journal of Nutrition and Cancer 44: 60-65.
11. Li, L., Yuan, T. Z., Setia, R., Raja, R. B., Zhang, B., & Ai, Y. 2019. Characteristics of pea, lentil and faba bean starches isolated from air-classified flours in comparison with commercial starches. Food Chemistry 276: 599–607.
12. Ai Y, Jane JL. 2015. Gelatinization and rheological properties of starch. Starch-Starke 67: 213–224.
13.Sangokunle, O. O., Sathe, S. K., & Singh, P. 2020. Purified starches from 18 pulses have markedly different morphology, oil absorption and water absorption capacities, swelling power, and turbidity. Starch Starke 72: 11–12.
14.Laura Bravo, Perumal Siddhuraju, and Fulgencio Saura-Calixto. 1998. Effect of Various Processing Methods on the in Vitro Starch Digestibility and Resistant Starch Content of Indian Pulses. Agric. Food Chem 46: 4667−4674.
15.Hu, F. B. 2003. Plant-based foods and prevention of cardiovascular disease: An overview. American Journal of Clinical Nutrition 78: 544–551.
16.Jacobs, D. R., & Gallaher, D. D. 2004. Whole grain intake and cardiovascular disease. A review: Current Atherosclerosis Reports 6: 415–423.
17.Dahl WJ, Foster LM, Tyler RT. 2012. Review of the health benefits of peas (Pisum sativum L.). Br J Nutr 108: 3–10
18.Ghumman A, Kaur A, Singh N. 2016. Functionality and digestibility of albumins and globulins from lentil and horse gram and their effect on starch rheology. Food Hydrocolloids 61: 843–850.
19.Dobhal,N and Raghuvanshi R.S. 2018. Physical characteristics and effect of germination on functional properties of black soyabean (Glycine max) Asian Journal of Dairy and Food Science 37: 56-60.
20.Khandelwal. S, Shobha A. Udipi, Padmini Ghugre. 2010. Polyphenols and tannins in Indian pulses: Effect of soaking, germination, and pressure cooking. Food Research International 43: 526–530.
21.Filiz Parca, Yakup Onur Koca, Aydın Unay. 2018. Nutritional and Antinutritional Factors of Some Pulses Seed and Their Effects on Human Health. International Journal of Secondary Metabolite 5(4): 331-342.
22.Perumal Siddhuraju and Klaus Becker. 2001. Effect of Various Domestic Processing Methods on Antinutrients and in Vitro Protein and Starch Digestibility of Two Indigenous Varieties of Indian Tribal Pulse, Mucuna pruriens Var. utilis. J. Agric. Food Chem 49: 3058−3067.
23.Midorikawa, K., Murata, M., Oikawa, S., Hiraku, Y., & Kawanishi, S. 2001. Protective effect of phytic acid on oxidative DNA damage with reference to cancer chemoprevention. Biochemical and Biophysical Research Communications 288(3): 552–557.
24.Welch, R.M., Graham, R.D. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany 52: 353–364.
25.Soetan, K.O. 2008. Pharmacological and other beneficial effects of antinutritional factors in plants. African Journal of Biotechnology 7(25): 4713–4721.
26.Liener, I.E. 2003. Phytohemagglutinins: Their nutritional significance. Journal of Agricultural and Food Chemistry 22: 17-20.
27.Xia, J., Liao, S. 2013. Cardiovascular Diseases Detecting via Pulse Analysis. Engineering 5: 176-180.
28.Shi, J., Xue, S.J., Ma, Y., Li, D., Kakuda, Y., Lan, Y. 2009. Kinetic study of saponins B stability in navy beans under different processing conditions. Journal of Food Engineering 93: 59-65.
29.Patterson, C.A., Curran, J., Der T. 2017. Effect of processing on antinutrient compounds in pulses. Cereal Chemistry 94: 2–10.
30.Duranti, M. 2006. Grain legume proteins and nutraceutical properties. Fitoterapia 77: 67–82.
31.Rocha-Guzman, N.E., Gonzalez-Laredo, R.F., Ibarra-Perez, F.J., Nava-Berumen, C.A., Gallegos-Infante, J.A. 2007. Effect of pressure cooking on the antioxidant activity of extracts from three common bean (Phaselus vulgaris L.) cultivars. Food Chemistry 100: 31-35.
32. Ranilla, L.G., Genovese, M.I., Lajolo, F.M. 2009. Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaseolus vulgaris L.) cultivars. Journal of Agricultural and Food Chemistry 57: 5734- 5742.
33. Nasar-Abbas, S.M., Plummer, J.A., Siddique, K.H.M., White, P., Harris, D., Dods, K. 2008. Cooking quality of faba bean after storage at high temperature and the role of lignins and other phenolics in bean hardening. LWT - Food Science and Technology 41: 1260-1267.
34. López, P. M. G., de la Mora, P. G., Wysocka, W., Maiztegui, B., Alzugaray, M. E., Del Zotto, H., & Borelli, M. I. 2004. Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. European Journal of Pharmacology 504(1): 139–142.
35. Faris, M. E. A. I. E., Takruri, H. R., & Issa, A. Y. 2013. Role of lentils (Lens culinaris L.) in human health and nutrition: a review. Mediterranean Journal of Nutrition and Metabolism 6(1): 3–16.
36. Chiang, Y. C., Chen, C. L., Jeng, T. L., & Sung, J. M. 2014. In vitro inhibitory effects of cranberry bean (Phaseolus vulgaris L.) extracts on aldose reductase, aglucosidase and a-amylase. International Journal of Food Science & Technology 49(6): 1470–1479.
37. Sirtori, C. R., Lovati, M. R., Manzoni, C., Castiglioni, S., Duranti, M., Magni, C., et al. 2004. Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. The Journal of Nutrition 134(1): 18–23.
38. Reddy, N., Hernandez-Ilizaliturri, F. J., Deeb, G., Roth, M., Vaughn, M., Knight, J., et al. 2008. Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. British Journal of Haematology 140(1): 36–45.
39.Pusztai, A., Grant, G., Buchan, W. C., Bardocz, S., De Carvalho, A. F. F. U., & Ewen, S. W. B. 1998. Lipid accumulation in obese Zucker rats is reduced by inclusion of raw kidney bean (Phaseolus vulgaris) in the diet. British Journal of Nutrition 79 (02): 213–221.
40.Leticia X. López-Martínez, Nayely Leyva-López, Erick P. Gutiérrez-Grijalva, J. Basilio Heredia. 2017. Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of Functional Food 38: 624-634.
41.Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. 2004. Saponins from edible legumes: chemistry, processing, and health benefits. Journal of Medicinal Food 7(1): 67–78.
42.Fan, Y., Guo, D. Y., Song, Q., & Li, T. 2013. Effect of total saponin of aralia taibaiensis on proliferation of leukaemia cells. Journal of Chinese Medicinal Materials 36(4): 604–607.
43.Siah, S. D., Konczak, I., Agboola, S., Wood, J. A., & Blanchard, C. L. 2012. In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): chemo preventative capacity and inhibitory effects on the angiotensin-converting enzyme, a-glucosidase, and lipase. British Journal of Nutrition 108(S1): S123–S134.
44.Pedrosa, M. M., Cuadrado, C., Burbano, C., Allaf, K., Haddad, J., Gelencsér, E., et al. 2012. Effect of instant controlled pressure drop on the oligosaccharides, inositol phosphates, trypsin inhibitors and lectins contents of different legumes. Food Chemistry 31(3): 862–868.
45.Chan, Y. S., Zhang, Y., Sze, S. C. W., & Ng, T. B. 2013. A thermostable trypsin inhibitor with antiproliferative activity from small pinto beans. Journal of Enzyme Inhibition and Medicinal Chemistry 29(4): 485–490.
46.Fei Fang, E., Abd Elazeem Hassanien, A., Ho Wong, J., Shui Fern Bah, C., Saad Soliman, S., & Bun Ng, T. 2011. Isolation of a new trypsin inhibitor from the Faba bean (Vicia faba cv. Giza 843) with potential medicinal applications. Protein and Peptide Letters 18(1): 64–72.
47.Clemente, A., McKenzie, D. A., Johnson, I. T., & Domoney, C. 2004. Investigation of legume seed protease inhibitors as potential anti-carcinogenic proteins. Legumes for the benefit of agriculture, nutrition, and the environment. In Proc 5th Eur Conf Grain Legume Dijon. AEP pp: 51.
48.Altieri, M.A., Nicholls, C.I. 2017. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change 140:33–45.
49.Ganesan, K., Xu, B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. 2017. International Journal of Molecular Sciences 18:2331.
50.Carbanaro, M., Cappelloni, M., Nicoli, S., Lucarini, M., & Carnovale, E. 1997. Solubility–digestibility relationship of legume proteins. Journal of Agricultural and Food Chemistry 45: 3387–3394.
51.Han, I. H., Swanson, B. G., & Baik, B. K. 2007. Protein digestibility of selected legumes treated with ultrasound and high hydrostatic pressure during soaking. Cereal Chemistry 84(5): 518–521.
52.Jayalath VH, et al. 2014. Effect of dietary pulses on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Am J Hypertens 27(1): 56-64.
53.Kim SJ, de Souza RJ, Choo VL, et al. 2016. Pulse consumption and nutrient intake: patterns in the Canadian population. J Am Coll Nutr 35(1): 41-49.
54.Aune D, Keum N, Giovannucci E, et al. 2016. Legume intake and the risk of cancer: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 103(4): 1037-1052.
55.Kim SJ, de Souza RJ, Choo VL, et al. 2016. Effects of dietary pulse consumption on body weight: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 103(5): 1213-1223.
56.Puzziferri N, et al. 2008. Nutritional Strategies for Osteoporosis Prevention. The Journal of Nutrition 138(2): 252-256.
57.Fernandez ML, et al. 2003. Dietary Fiber and Colon Cancer Risk. The American Journal of Clinical Nutrition 78(5): 883S-893S.
58.Chen Z, et al. 2015. Lentil (Lens culinaris Medikus) consumption improves adrenal gland function in rats with adrenal insufficiency. Journal of Endocrinology 225(3): 181-191.
59.C.P.F. Marinangeli, S.V. Harding, M. Zafron and T.C. Rideout. 2020 . A systematic review of the effect of dietary pulses on microbial populations inhabiting the human gut. Beneficial microbes 11(5): 457-468.
60.Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K. and Reid, G. 2017. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology 14: 491.
61.Tosh SM, Brummer Y, Miller SS, et al. 2018. Dried lentil consumption improves gut health parameters in healthy adults: a randomized controlled trial. J Nutr 148(8): 1260-1268.
62.Singh A, Sharma RK, Singh R, et al. 2018. Chickpea and lentil inclusion in an ad libitum diet modifies the fecal microbiota in healthy adults. Br J Nutr 120(11): 1246-1259.
63.Marventano S, Vetrani C, Vitale M, et al. 2017. Legume fiber, gut microbiota, and colorectal cancer prevention: a review of the experimental and epidemiological evidence. Am J Clin Nutr 105(3): 676-687.
64.Mekaouche M, Chain F, Sinclair H, et al. 2020. Lentil-based soup consumption promotes satiety and improves gut microbiota function in overweight and obese adults. J Nutr 150(3): 579-587.
65.Maninder Kaur & Kawaljit Singh Sandhu & RavinderPal Ahlawat & Somesh Sharma 2013. In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. J Food Sci Technol 13: 1136.
66.Singh, U., Kaur, J., Singh, N., & Nishad, J. 2014. Effect of domestic processing and cooking methods on the in vitro starch digestibility and predicted glycaemic indices of some pulse and legume preparations consumed in India. Journal of Food Science and Technology 51(3): 502-507.
67.Tiwari, U., & Cummins, E. 2016. Factors influencing levels of phytochemicals in selected fruits and vegetables during pre- and post-harvest food processing operations. Food research international 50(2): 497 – 506.
68.Fernández-Ruiz, V., Muzquiz, M., Burbano, C., Ayet, G., Cuadrado, C., & Pedrosa, M. M. 2009. Nutritional and nutraceutical comparison of Jamaican and Spanish kidney beans (Phaseolus vulgaris L.)-Effects of cooking and varietyLWT-Food Science and Technology 42(8): 1381-1387.
69.Ogunmoyela, O. A., Akinoso, R., & Enujiugha, V. N. 2018. Effect of processing on the nutritional composition, in vitro starch digestibility, and functional properties of pigeon pea flour. Journal of Food Processing and Preservation 42(7): e13639.
70.Joyce Boye a, Fatemeh Zare b, Alison Pletch. 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International 43: 414–431.
71.Yasmin, A., Zeb, A., Khalil, A. W., Paracha, G. M., & Khattak, A. B. 2008. Effect of processing on anti-nutritional factors of red kidney bean (Phaseolus vulgaris) Grains. Food Bioprocess Technology 1: 415–419.
72.Murillo Carolina Estefaníab, Veyna-Torres Jorge Ivanb , Cavazos-Tamez Luisa Maríaa , de la Rosa-Millán Juliána,⁎ , Serna-Saldívar Sergio Othona. 2017. Physicochemical characteristics, ATR-FTIR molecular interactions and in vitro starch and protein digestion of thermally treated whole pulse flours. Food Research International 105: 371–383.
73.Singh, U., Singh, R. B., & Khare, S. K. 2015. Nutritional composition and in vitro protein digestibility of some newly developed genotypes of black gram [Vigna mungo (L.) Hepper]. Journal of food science and technology 52(9): 5646-5651.
74.Nandi, A., Maity, K., & Chakraborty, R. 2015. Effect of processing on in vitro protein digestibility and antinutritional factors of some legume seeds. Journal of food science and technology 52(5): 2833-2839.
75.Adebowale, Y. A., Adeyemi, I. A., & Oshodi, A. A. 2005. Comparative study of the physicochemical and pasting properties of flour and starch from red and white cowpea (Vigna unguiculata L. Walp) seed. Food chemistry 93(2): 243-249.
76.Tang, Y., Li, X., Chen, P. X., Zhang, B., & Liu, R. H. 2018. In vitro digestion and protein quality of pulse proteins using the simulated human digestion system. Journal of agricultural and food chemistry 66(3): 749-757.