اثر جایگزینی نیتریت سدیم با نانوکپسولهای حامل آستاگزانتین میکروجلبک هماتوکوکوس (Haematococcus pluvialis) در فرمولاسیون سوسیس معمولی بر رشد و تکثیر میکروارگانیسم های بیماری زا و عامل فساد

نویسندگان
1 استاد، گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2 دانش آموخته دکتری تخصصی، گروه فراوری محصولات شیلاتی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
چکیده
هدف تحقیق حاضر استفاده از نانوکپسول­های حامل رنگدانه آستاگزانتین در فرمولاسیون سوسیس معمولی به عنوان جایگزین نیتریت سدیم و جستجوی میکروارگانیسم­های بیماری­زا و عامل فساد در محصول بود. به همین منظور پس از استخراج آستاگزانتین از میکروجلبک هماتوکوکوس پلوویالیس و تولید نانوکپسول­های حامل رنگدانه با پوشش ترکیبی مالتودکسترین-کازئینات سدیم، پنج تیمار با نسبت­های مختلف نیتریت سدیم و نانوکپسول­های حامل آستاگزانتین به همراه شاهد طراحی و طی 28 روز نگهداری در دمای یخچال از نظر وجود باکتری­های کلستریدیوم پرفرنجس، استافیلوکوکوس اورئوس، کلی­فرم­، سالمونلا، اشریشیاکلی، کلستریدیوم بوتولینوم، باکتری­های لاکتیک­اسید، کپک­ها و مخمرها مورد ارزیابی قرار گرفتند. نتایج نشان داد در تیمار دارای حد مجاز نیتریت سدیم یعنی mg/kg120 (تیمار A) و همچنین تیمارهایی که این حد با mg/kg30 (تیمار C) و mg/kg60 نانوکپسول­های حامل آستاگزانتین (تیمار D) جایگزین شد، شمارش باکتری­های کلستریدیوم پرفرنجس، استافیلوکوکوس اورئوس و کلی­فرم­ در حد استاندارد و کمتر از CFU/gr10 ثبت گردید. در تیمارهای صرفا حاوی mg/kg120 نانوکپسول­های حامل (تیمار B) و همچنین دارای mg/kg30 نیتریت سدیم و mg/kg90 نانوکپسول­های حامل (تیمار E)، فقط در روز 28، شمارش سه باکتری مذکور بیشتر از CFU/gr10 بود. در ادامه مشخص شد که هیچ یک از تیمارهای تحقیق محتوی باکتری­های سالمونلا، اشریشیاکلی و کلستریدیوم بوتولینوم نیستند. همچنین هر پنج تیمار فرموله­شده در طول دوره نگهداری از نظر باکتری­های لاکتیک­اسید در محدوده استاندارد قرار داشتند. نتایج شمارش کپک­ها و مخمر­ها نشان داد که این تیمارها بر خلاف نمونه شاهد در کل دوره نگهداری فاقد هرگونه کلنی کپک و مخمر بودند. مطابق یافته­های این پژوهش، در صورت جایگزینی 50 درصد حد مجاز نیتریت سدیم با نانوکپسول­های حامل آستاگزانتین، می­توان محصولی عاری از میکروارگانیسم­های تهدیدکننده سلامتی تولید کرد. ضمن اینکه با این فرایند، از مضرات نیتریت سدیم کاسته و بواسطه ارزش غذایی و نقش اثبات­شده آستاگزانتین در حفظ سلامتی و پیشگیری از بیماری­های مختلف، به مفیدبودن محصول افزوده خواهد شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of replacing sodium nitrite by nanocapsules carrying astaxanthin from Haematococcus pluvialis in common sausage formulation on the growth and proliferation of pathogenic and spoilage microorganisms

نویسندگان English

Sakineh Yeganeh 1
Soheyl Reyhani Poul 2
1 Professor, Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 PhD graduate, Department of Processing of Fishery Products, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده English

The purpose of present study was to use nanocapsules carrying astaxanthin pigment in common sausage formulation as a substitute for sodium nitrite and search for pathogenic and spoilage microorganisms in the product. For this purpose, after extracting astaxanthin from Haematococcus pluvialis microalgae and producing nanocapsules carrying pigment with maltodextrin-sodium caseinate combined coating, five treatments using different proportions of sodium nitrite and nanocapsules carrying astaxanthin along with control were designed and evaluated in term of the presence of Clostridium perfringens, Staphylococcus aureus, coliform, salmonella, Escherichia coli, Clostridium botulinum, lacticacid bacteria bacteria, yeasts and molds during 28 days of storage at refrigerator temperature. The results showed that in the treatment with the permissible limit of sodium nitrite or 120 mg/kg (treatment A) and also the treatments that this limit was replaced by 30 mg/kg (treatment C) and 60 mg/kg (treatment D) of nanocapsules carrying astaxanthin, the counts of Clostridium perfringens, Staphylococcus aureus, and coliform bacteria were within the standard limit and recorded less than 10 cfu/gr. In treatments containing only 120 mg/kg nanocapsules carrying astaxanthin and also containing 30 mg/kg sodium nitrite and 90 mg/kg nanocapsules carrying astaxanthin (treatment E), only on day 28, the counts of three mentioned bacteria were more than 10 CFU/gr. Further, it was found that none of the research treatments contain Salmonella, Escherichia coli and Clostridium botulinum bacteria. Also, all five formulated treatments were within the standard range in terms of lactic acid bacteria during storage time. The results of counting molds and yeasts showed that this treatments, unlike the control sample, did not have any mold and yeast colonies in the whole of storage period. According to the findings of this research if 50% of permissible sodium nitrite limit using nanocapsules carrying astaxanthin is replaced, it is possible to produce a product free of health-threatening microorganisms.

کلیدواژه‌ها English

Meat products
Sodium nitrite
Nanocapsules carrying astaxanthin
Clostridium perfringens
Staphylococcus aureus
[1] Toldrá, F., Aristoy, M. C. and Flores, M., 2009. Relevance of nitrate and nitrite in dry-cured ham and their effects on aroma development. Grasas y Aceites, 60(3), 291-296.
[2] Ferguson, L. R., Philpott, M. and Karunasinghe, N., 2004. Dietary cancer and prevention using antimutagens. Toxicology, 198(1-3), 147-159.
[3] Safari, R., Raftani Amiri, Z., Reyhani Poul, S. and Ghaffari, H., 2022. Nanoencapsulation of phycocyanin extracted from the alga Spirulina (Spirulina platensis) and use of resulting nanoparticles in ice cream formulation. Iranian Journal of Food Science and Technology, 123 (19), 145-159.
[4] Liu, Y. S., and Wu, J. Y., 2007. Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochemical Engineering Journal, 36(2), 182-189
[5] Gu, Z., Deming, C., Yongbin, H., Zhigang, C. and Feirong, G., 2008. Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT-Food Science and Technology, 41(6), 1082-1088.
[6] Zhou, T., Wang, X., Ju, Y., Shi, C. and Kan, G., 2018. Stability application and research of astaxanthin integrated into food. In IOP Conference Series: Materials Science and Engineering (Vol. 394, No. 2, p. 022007). IOP Publishing
[7] Guerin, M., Huntley, M. E. and Olaizola, M., 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 21(5), 210-216.
[8] Yuan, J. P., Peng, J., Yin, K. and Wang, J. H., 2011. Potential health‐promoting effects of astaxanthin: A high‐value carotenoid mostly from microalgae. Molecular Nutrition & Food Research, 55(1), 150-165.
[9] Dong, S., Huang, Y., Zhang, R., Wang, S. and Liu, Y., 2014. Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis. The Scientific World Journal, 2014.
[10] Irna, C., Jaswir, I., Othman, R. and Jimat, D., 2017. Antioxidant and antimicrobial activities of astaxanthin from Penaeus monodonin comparison between chemical extraction and High Pressure Processing (HPP). International Food Research Journal, 24, 508-513.
[11] Zhang, L. and Wang, H., 2015. Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Marine Drugs, 13(7), 4310-4330.
[12] Fassett, R. G. and Coombes, J. S., 2011. Astaxanthin: a potential therapeutic agent in cardiovascular disease. Marine Drugs, 9(3), 447-465.
[13] Chang, M. X. and Xiong, F., 2020. Astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: recent advances and future directions. Molecules, 25(22), 1-14.
[14] Zhuge, F., Ni, Y., Wan, C., Liu, F. and Fu, Z., 2021. Anti-diabetic effects of astaxanthin on an STZ-induced diabetic model in rats. Endocrine Journal, 68(4), 451-459.
[15] Reyhani Poul, S. and Yeganeh, S., 2022. Physicochemical and antioxidant properties of chitosan-coated nanoliposome loaded with bioactive peptides produced from shrimp wastes hydrolysis. Iranian Journal of Fisheries Sciences, 21(4), 987-1003.
[16] Machado, A. R., Assis, L. M., Costa, J. A. V., Badiale-Furlong, E., Motta, A. S., Micheletto, Y. M. S. and Souza-Soares, L. A., 2014. Application of sonication and mixing for nanoencapsulation of the cyanobacterium Spirulina platensis in liposomes. International Food Research Journal, 21(6), 2201-2206.
[17] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S. and Bugarski, B., 2011. An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815.
[18] Dewati, P. R., Rohman, A. and Budiman, A., 2020. A Preliminary Study of Extraction and Purification Processes of Astaxanthin from Haematococcus pluvialisas a Natural Antioxidant. In IOP Conference Series: Materials Science and Engineering (Vol. 778, No. 1, p. 012032). IOP Publishing.
[19] Sun, W., Lin, H., Zhai, Y., Cao, L., Leng, K. and Xing, L., 2015. Separation, Purification, and Identification of (3S, 3′ S) - trans-Astaxanthin from Haematococcus pluvialis. Separation Science and Technology, 50(9), 1377-1383.
[20] Khaleghi, A., Rezaei K., Kasai, M., Khosravi, K. and Soleymani, M., 2013. Evaluation of antioxidant properties of Berberis crataegina extract on fat oxidation of beef sausages during refrigerated storage. Iranian Journal of Nutrition Sciences and Food Technology, 7 (5), 345-353.
[21] FDA. 2013. Bacteriological analytical manual for foods. Washington, USA: US Government Printing Office.
[22] Birnbaum, D. G., Leonard, S., Heil, J. R., Buhlert, J. E., Wolcott, T. K. and Ansar, A., 1977. Microbial activity in heated and unheated to Wijnker mato serum concentrates. Journal of Food Processing and Preservation, 1(2), 103-118.
[23] Houben, J. H., 2005. A survey of dry-salted natural casings for the presence of Salmonella spp., Listeria monocytogenes and sulphite-reducing Clostridium spores. Food Microbiology, 22(2-3), 221-225.
[24] Zaika, L. L., 2003. Influence of NaCl content and cooling rate on outgrowth of Clostridium perfringens spores in cooked ham and beef. Journal of Food Protection, 66(9), 1599-1603.
[25] Ercolini, D., Ferrocino, I., La Storia, A., Mauriello, G., Gigli, S., Masi, P. and Villani, F., 2010. Development of spoilage microbiota in beef stored in nisin activated packaging. Food Microbiology, 27(1), 137-143.
[26] Alirezalu, K., Hesari, J., Eskandari, M. H., Valizadeh, H., Sirousazar, M. and Nemati, Z., 2018. Evaluation of microbiological and sensory properties of functional frankfurter sausage during storage. Journal of Food Science and Technology, 83 (15), 267-280.
[27] Mohammadpourfard, I., Khanjari, A., Akhonzadeh Basti, A., Herrero‐Latorre, C., Shariatifar, N. and Hosseini, H., 2021. Evaluation of microbiological, chemical, and sensory properties of cooked probiotic sausages containing different concentrations of astaxanthin, thymol, and nitrite. Food Science and Nutrition, 9(1), 345-356.
[28] Jackson, A., 2010. Investigating the microbiological safety of uncured no nitrate or nitrite added process ed meat products. PhD thesis, Iowa State University.
[29] Riazi, F., Zeynali, F., Hoseini, E. and Behmadi, H. 2016. Effect of dry red grape pomace as a nitrite substitute on the microbiological and physicochemical properties and residual nitrite of dry-cured sausage. Nutrition and Food Sciences Research, 3(3), 37-44.
[30] Shakerian, A., Rokni, N., Sharifzadeh, A., and Emampour, H., 2006. Study of microbial contamination of sausage supply in Shahrekord supermarkets. 2nd congress and exhibition of food science, Isfahan.
[31] Rahimi, E., 2013. Detection of classical enterotoxins of Staphylococcus aureus in raw sheep, goat, camel, and water buffalo milk by ELISA method. Comparative Clinical Pathology, 22(2), 181-184.
[32] Pillsbury, A., Chiew, M., Bates, J. and Sheppeard, V., 2013. An outbreak of staphylococcal food poisoning in a commercially catered buffet. Commun Dis Intell, 37(2), 144-148.
[33] Kozacinski, L., Zdolec, N., Hadziosmanovic, M., Cvrtila, Z., Filipovic, I. and Majic, T., 2006. Microbial flora of the Croatian traditionally fermented sausage. Archiv fur Lebensmittelhygiene, 57(5), 141-147
[34] Filimon, M. N., Borozan, A., Bordean, D., Radu, F. and Popescu, R., 2010. Microorganisms, qualitative indicators for meat products. Animal Science and Biotechnologies, 43(2), 346-349. 141-147
[35] Ferreira, V., Barbosa, J., Silva, J., Felício, M. T., Mena, C., Hogg, T. and Teixeira, P., 2007. Characterisation of alheiras, traditional sausages produced in the North of Portugal, with respect to their microbiological safety. Food Control, 18(5), 436-440.
[36] Abdelmalek, B. E., Sila, A., Ghlissi, Z., Taktak, M. A., Ayadi, M. A. and Bougatef, A., 2016. The influence of natural astaxanthin on the formulation and storage of marinated chicken steaks. Journal of Food Biochemistry, 40(4), 393-403.
[37] Karimi, M., Mehrabian, S., RAFIEI, T. R. and Samiai, B., 2010. A study on microbial properties of mechanically deboned chicken meat in meat plan of Tehran.
[38] Ljiljana, P., Natalija, D., Predrag, I., tatjana, T. and Vladimir, T., 2011. Quality and safety standardization of traditional fermented sausages. Tehnologija Mesa 74, 271-285.
[39] Suganya, V. and Asheeba, S., 2015. Antioxidant and antimicrobial activity of astaxanthin isolated from three varieties of crabs. International Journal of Recent Scientific Research, 6(10), 6753-6758.
[40] Dabbagh, H., Alizadeh, A. and Seyed Moslemi, A., 2018. Evaluation of microbial characteristics of dry fermented sausage without primer culture. Journal of Food Research, 28 (2), 115-125
[41] Modarres, S., 1997. Role of Clostridium botulinumspecies in food contamination in Iran. Journal of Scientific Medicine Ahvaz Medical Science University. (23), 33-40
[42] Soltaninejad, V., 2005. Isolation of E. coli O157:H7from hamburger samples in Mashhad. 14th National Congress of Veterinary Medicine, Tehran.
[43] Korkeala, H. J. and Björkroth, K. J., 1997. Microbiological spoilage and contamination of vacuum-packaged cooked sausages. Journal of Food Protection, 60(6), 724-731.
[44] Porretta, S. and Vicini, E., 1993. Changes in tomato pulp quality caused by lactic acid bacteria. International Journal of Food Science & Technology, 28(6), 611-616.
[45] Gungor, E. and Gokglu, N., 2010. Determination of microbial contamination sources at a Frankfurter sausage processing line. Turkish Journal of Veterinary and Animal Sciences, 34(1), 53-59
[46] Hosseini, H., Ahmadi, H., Akhavan, H., Ferdowsi, R., Khaksar, R., Shahraz, F. and Kamran, M., 2007. The growth pattern of aerobic mesophilic microorganisms, cold-loving, mold and yeast in 4 groups of heated red meat products during the storage period. National Nutrition &Food Technology Research Institute, 3 (2), 33-40.