تولید رشته آشی فراسودمند حاوی نشاسته برنج مقاوم به هضم نوع 3

نویسندگان
1 دانشجوی دکتری گروه علوم و صنایع غذایی، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران.
2 استاد‌یار گروه علوم و مهندسی صنایع غذایی، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران
3 استاد‌یار گروه کشاورزی و دامپروری، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران
چکیده
برخلاف روش‌های سنتی فراوری که هدف آنها افزایش هضم‌پذیری غذاست، گرایش اخیر فرآوری مواد غذایی حاوی نشاسته به تدریج به طراحی غذاهای خوش طعم با شاخص گلایسمیک پایین و خواص عملکردی بهبود یافته تغییر پیدا کرده است. هدف از این پژوهش بررسی تاثیر همزمان فرآیندهای فراصوت/مایکروویو بر میزان تولید نشاسته مقاوم به هضم نوع 3 (RS3) در برنج و متعاقبا تولید رشته آشی حاوی سطوح مختلف از RS3 بود. نشاسته تولیدی از لحاظ ریزساختار و ساختار کریستالی ارزیابی و ویژگی‌های رئولوژیکی رشته آشی آنالیز گردید. نتایج نشان داد در سطح اطمینان 95% تاثیر خطی هر دو متغیر توان فراصوت و توان مایکروویو و همچنین اثر متقابل دوطرفه توان فراصوت در توان مایکروویو تاثیر معنی‌داری بر روی میزان RS3 نمونه‌های مختلف داشت (05/0>p). میزان RS3 در تیمارهای مختلف نشاسته برنج در محدوده 65/31 تا 29/64% متغیر بود. تصاویر میکروسکوپ الکترونی روبشی نشان داد که دانه‌های نشاسته دارای اشکال چند وجهی یا نامنظم با اندازه در محدوده 2/2-9/8 میکرومتر بوده و با افزایش توان دو دستگاه و متعاقبا افزایش میزان تولید RS3، ساختاری آمورف شکل گرفت. اعمال تیمار فراصوت/مایکروویو منجر به ایجاد پیک‌های جدید و تغییر شدت پیک‌ها در طیف XRD شد. نتایج آلوئوگراف نمونه‌های رشته آشی حاکی از تغییر معنی‌دار شاخص‌های دستگاهی شامل متوسط حداکثر ارتفاع منحنی، متوسط طول منحنی، شاخص تورم، سطح زیر منحنی، نسبت پیکربندی و شاخص الاستیسیته شد. نتایج این تحقیق نشان داد استفاده از نشاسته مقاوم برنج در سطح 10% می‌تواند سبب بهبود ویژگی‌های تکنولوژیکی رشته آش از لحاظ ویژگی‌های بافتی شده و در نتیجه غنی‌سازی رشته آش در سطح 10% RS3 توصیه می‌شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of functional Ash Reshteh containing rice resistance starch type III

نویسندگان English

Sonia Kia 1
Seyyed Hossein Hosseini Ghaboos 2
Abolfazl Fadavi 2
Abolghasem Seraj 3
1 Ph.D. Student, Department of Food Science and Technology, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran.
2 Assistant Professor, Department of Food Industry Science and Engineering, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
3 Department of Agriculture and Animal Science, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
چکیده English

Unlike the traditional processing methods, whose goal is to increase the digestibility of food, the recent trend of food processing containing starch has gradually changed to design foods with low glycemic index. The aim of this study was to investigate the simultaneous effect of ultrasound/microwave processes on the production of resistant starch type 3 (RS3) in rice and subsequently the production of Reshteh Ashi containing different levels of RS3. The produced starch was evaluated in terms of microstructure and crystal structure, and the rheological characteristics of Reshteh Ashi were analyzed. The results showed that at the 95% confidence level, the linear effect of both the ultrasonic power and microwave power variables, as well as the two-way interaction of ultrasonic power and microwave power, had a significant effect on the amount of RS3 in different samples (p<0.05). The amount of RS3 in different treatments of rice starch varied from 31.65 to 64.29%. The SEM studies showed that the starch granules had polyhedral or irregular shapes with a size in the range of 2.2-9.8 µm and an amorphous structure was formed by increasing the power of the two devices and subsequently increasing the amount of RS3 production. The application of ultrasound/microwave treatment led to the creation of new peaks and changes in the intensity of the peaks in the XRD spectrum. Alveograph results of Reshteh Ashi samples showed a significant change in the indices, including maximum overpressure, average abscissa to rupture, swelling index, area under the curve, configuration ratio and elasticity index. The results of this research showed that the use of resistant rice starch at the level of 10% can improve the technological characteristics of Reshteh Ashi in terms of textural characteristics, and as a result, the enrichment of Reshteh Ashi at the level of 10% RS3 is recommended.

کلیدواژه‌ها English

Resistant starch
Microwave
Ultrasound
Reshteh Ashi
Rice starch
1- Hashemi, M., Mazaheritehrani, M., Razavi, S. M. A., & Milani, E. (2019). Evaluation of physicochemical and functional properties of corn resistant starch prepared by autoclaving method. Innovative Food Technologies, 6(2), 187-200.
2- Fan, D., L. Wang, W. Chen, S. Ma, W. Ma, X. Liu, J. Zhao, and H.Zhang. (2014). Effect of microwave on lamellar parameters of rice starch through small-angle X-ray scattering. Food Hydrocolloids 35 (3):620–6.
3- Falsafi, R., Maghsudloo, Y., Alami, M., Jafari, M., (2018). The effect of acid hydrolysis process with the help of ultrasound along with thermal-moisture process on the physicochemical characteristics and digestibility of corn starch. Food Science and Technology, 15: 357-367.
4- Jambrak, A. R., Z. Herceg, D. Subaric, J. Babic, M. Brncic, S. R. Brncic, T. Bosiljkov, D. Cvek, B. Tripalo, and J. Gelo. (2010). Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers 79 (1):91–100.
5- Zhao, B., Sun, S., Lin, H., Chen, L., Qin, S., Wu, W., ... & Guo, Z. (2019). Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. Ultrasonics sonochemistry, 52, 50-61.
6- Mirela, B., and R. N. Monica. (2014). Behaviour of starch exposed to microwave radiation treatment. Starch-St€arke 66 (1–2):3–14.
7- Kim, H. Y., S. S. Park, and S. T. Lim. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B 126:607–20.
8- Yang, Q., L. Qi, Z. Luo, X. Kong, Z. Xiao, P. Wang, and X. Peng.(2017). Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocolloids 69: 473–82.
9- Ashwar, B. A., Shah, A., Gani, A., Rather, S. A., Wani, S. M., Wani, I. A., ... & Gani, A. (2014). Effect of gamma irradiation on the physicochemical properties of alkali-extracted rice starch. Radiation Physics and Chemistry, 99, 37-44.
10- Gon˜i, I., Garcia-Alonso, A., Saura-Calixto, F. (1997).A starchy hydrolysis procedure to estimate glycemic index. Nutrition Research, 17, 427–437.
11- Boorboormoradi, Z., & Nateghi, L. (2020). Investigating the effects of addition of zedo gum on physicochemical, sensory, rheological and colorimetric properties of low salt Ashi noodle.
12- Deepa, G., Singh, V., & Naidu, K. A. (2010). A comparative study on starch digestibility, glycemic index and resistant starch of pigmented (‘Njavara’and ‘Jyothi’) and a non-pigmented (‘IR 64’) rice varieties. Journal of food science and technology, 47(6), 644-649.
13- Reddy, D. K., & Bhotmange, M. G. (2013). Isolation of starch from rice (Oryza sativa L.) and its morphological study using scanning electron microscopy. International Journal of Agriculture and Food Science Technology, 4(9), 859-866.
14- Wang, M., Wu, Y., Liu, Y., & Ouyang, J. (2020). Effect of ultrasonic and microwave dual-treatment on the physicochemical properties of chestnut starch. Polymers, 12(8), 1718.
15- Yang, Q. Y., Lu, X. X., Chen, Y. Z., Luo, Z. G., & Xiao, Z. G. (2019). Fine structure, crystalline and physicochemical properties of waxy corn starch treated by ultrasound irradiation. Ultrasonics sonochemistry, 51, 350-358.
16- Kaur, H., & Gill, B. S. (2019). Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals. International journal of biological macromolecules, 126, 367-375.
17- Espinosa-Solis, V., Zamudio-Flores, P. B., Espino-Díaz, M., Vela-Gutiérrez, G., Rendón-Villalobos, J. R., Hernández-González, M., ... & Ortega-Ortega, A. (2021). Physicochemical characterization of resistant starch type-iii (Rs3) obtained by autoclaving malanga (xanthosoma sagittifolium) flour and corn starch. Molecules, 26(13), 4006.
18- Dundar, A. N., & Gocmen, D. (2013). Effects of autoclaving temperature and storing time on resistant starch formation and its functional and physicochemical properties. Carbohydrate polymers, 97(2), 764-771.
19- Lertwanawatana, P., Frazier, R. A., & Niranjan, K. (2015). High pressure intensification of cassava resistant starch (RS3) yields. Food chemistry, 181, 85-93.
20- Shah, A., Masoodi, F. A., Gani, A., & Ashwar, B. A. (2016). In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch. Food chemistry, 212, 749-758.
21- Wang, R., Li, M., Strappe, P., & Zhou, Z. (2021). Preparation, structural characteristics and physiological property of resistant starch. In Advances in Food and Nutrition Research (Vol. 95, pp. 1-40). Academic Press.
22- Zhang, T., Li, X., Chen, L., & Situ, W. (2016). Digestibility and structural changes of waxy rice starch during the fermentation process for waxy rice vinasse. Food Hydrocolloids, 57, 38-45.
23- Luengwilai, K., & Beckles, D. M. (2009). Structural investigations and morphology of tomato fruit starch. Journal of Agricultural and Food Chemistry, 57(1), 282-291.
24- Cai, L., Shi, Y. C., Rong, L., & Hsiao, B. S. (2010). Debranching and crystallization of waxy maize starch in relation to enzyme digestibility. Carbohydrate Polymers, 81(2), 385-393.
25- Eerlingen, R. C., Deceuninck, M., & Delcour, J. A. (1993). Enzyme-resistant starch. II. Influence of amylose chain length on resistant starch formation. Cereal chemistry (USA).
26- Dubois, M., Dubat, A., & Launay, B. (2016). AlveoConsistograph Handbook. Elsevier.
27- Alava, J. M., Sahi, S. S., Garcia-Alvarez, J., Turo, A., Chavez, J. A., Garcia, M. J., & Salazar, J. (2007). Use of ultrasound for the determination of flour quality. Ultrasonics, 46(3), 270-276.
28- Jødal, A. S. S., & Larsen, K. L. (2021). Investigation of the relationships between the alveograph parameters. Scientific reports, 11(1), 1-10.
29- Afshin Pajoh, R., Saediasl, M.R., Abdolahzadeh, A., Enayati, A., Amini, M. and Yaghobi, A. (2011). The effect of inulin on the rheological properties of pasta dough. Journal of Food Science and Technology of Iran, 4(3), 27-16.
30- Shyu, Y. S., Hwang, J. Y., Huang, T. C., & Sung, W. C. (2018). Effect of resistant starch on physicochemical properties of wheat dough and bread. Journal of Food and Nutrition Research, 6(5), 335-340.
31- Del Nobile, M. A., Baiano, A., Conte, A., & Mocci, G. (2005). Influence of protein content on spaghetti cooking quality. Journal of Cereal Science, 41(3), 347-356.
32- Barros, J. H., Telis, V., Taboga, S., & Franco, C. M. (2018). Resistant starch: Effect on rheology, quality, and staling rate of white wheat bread. Journal of food science and technology, 55(11), 4578-4588.
33- Naseri, A. R., Taslimi, A., Seyedin, S. M., Haratiyan, P. and Abadi, A. R. (2009). Study of the effect of soy protein isolate on macaroni characteristics. Journal of Food Science and Technology of Iran, 2(6), 11-1.
34- Bordes, J., Branlard, G., Oury, F. X., Charmet, G., & Balfourier, F. (2008). Agronomic characteristics, grain quality and flour rheology of 372 bread wheats in a worldwide core collection. Journal of cereal science, 48(3), 569-579.
35- AbuHammad, W. A., Elias, E. M., Manthey, F. A., Alamri, M. S., & Mergoum, M. (2012). A comparison of methods for assessing dough and gluten strength of durum wheat and their relationship to pasta cooking quality. International Journal of Food Science & Technology, 47(12), 2561-2573.
36- Rasti, S., Azizi, M.H. and Abbasi, S. (2011). Effects of barley β-glucan on some rheological properties of wheat flour.Journal of Food Science and Technology of Iran, 4(6), 58-51.
37- Huen, J., Börsmann, J., Matullat, I., Böhm, L., Stukenborg, F., Heitmann, M., ... & Arendt, E. K. (2018). Pilot scale investigation of the relationship between baked good properties and wheat flour analytical values. European Food Research and Technology, 244(3), 481-490.