ویژگی‌های فیزیکوشیمیایی و عملکردی پروتئین استخراج‌شده از سیب‌زمینی

نویسندگان
1 واحد آیت ا... آملی، دانشگاه آزاد اسلامی
2 واحد علوم و تحقیقات، دانشگاه آزاد اسلامی
3 دانشگاه علامه طباطبایی
چکیده
هدف از این مطالعه استخراج پروتئین سیب‌زمینی با تلفیق فرآیند فراپالایش و دیافیلتراسیون در زمان‌های مختلف (90، 285 و 480 دقیقه) و سپس بررسی خصوصیات فیزیکوشیمیایی و عملکردی پروتئین حاصل می‌باشد. برای این منظور پروتئین تراوه و ناتراوه تغلیظ شده در زمان‌های مختلف از لحاظ خصوصیات عملکردی (حلالیت، ظرفیت جذب آب و روغن، اندیس فعالیت امولسیون کنندگی و اندیس پایداری امولسیون) با پروتئین سیب‌زمینی شاهد مقایسه شدند. در پروتئین ناتراوه و نمونه شاهد با افزایش pH از 3 تا 7 به‌طور معنی‌داری (05/0>p) حلالیت افزایش یافت اما با افزایش pH از هفت تا نه به‌طور معنی‌داری (05/0>P) از میزان حلالیت کاسته شد. بااین‌وجود در نمونه‌های پروتئین تراوه با افزایش pH از سه تا نه به‌طور معنی‌داری (05/0>P) میزان حلالیت افزایش یافت. علاوه براین‌ها مشخص شد که میزان حلالیت پروتئین‌ها ناتراوه به‌طور معنی‌داری (05/0>P) بالاتر از پروتئین‌های تراوه و پروتئین سیب‌زمینی شاهد بود. نمونه‌های پروتئین ناتراوه به‌طور معنی‌داری (05/0>p) دارای ظرفیت جذب آب بالاتری نسبت به پروتئین‌های تراوه و نمونه پروتئین شاهد داشتند. ظرفیت جذب روغن پروتئین‌ها نیز به‌طور معنی‌داری (05/0>P) وابسته به زمان دیافیلتراسیون و نوع فرآیند بود. به‌طوری‌که با افزایش زمان دیافیلتراسیون ظرفیت جذب روغن پروتئین‌ها ناتراوه و تراوه کاهش یافت. همچنین مشخص شد که ظرفیت جذب روغن پروتئین‌های ناتراوه (g oil/ g protein 09/59 دیافیلتراسیون 90 دقیقه) به‌طور معنی‌داری (05/0>P) بیشتر از پروتئین‌های تراوه (g oil/ g protein 13/32 دیافیلتراسیون 90 دقیقه) بود. اندیس فعالیت امولسیفایری و اندیس پایداری امولسیون با افزایش زمان دیافیلتراسیون در نمونه‌های ناتراوه به‌طور معنی‌داری افزایش یافت اما این شاخص‌ها با افزایش زمان دیافیلتراسیون در نمونه‌های پروتئین تراوه به‌طور معنی‌داری کاهش یافتند. آنالیز حرارتی پروتئین ناتراوه در مقایسه با پروتئین نمونه شاهد نشان داد که پروتئین ناتراوه سیب‌زمینی (35/0 ± 85/18 گرم آب به ازای هر گرم پروتئین در زمان 480 دقیقه) دارای ظرفیت جذب آب بالاتری می‌باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Physicochemical and Functional Properties of Protein Extracted from Potato

نویسندگان English

Nadia Shokraneh 1
Mazdak Alimi 1
Seyed-Ahmad Shahidi 1
Maryam Mizani 2
Mohammad Bamenimoghadam 3
1 Ayatollah Amoli Branch, Islamic Azad University
2 Science and Research Branch, Islamic Azad University
3 Allameh Tabataba’i University
چکیده English

The aim of this study is extraction of potato protein via incorporation of ultrafiltration with different diafiltration times (90, 285 and 480 min), and evaluation of physicochemical and functional properties of extracted protein. So, in terms of functional characteristics (solubility, water and oil absorption capacity, emulsifying activity and emulsion stability) the concentrated permeate and retentate proteins, have been compared with control sample. In retentate and control samples the solubility increases significantly (P˂0.5) with raising the pH from 3 to 7, inverse it decreased between the 7 to 9. In addition, it was found that the solubility of retentate proteins were significantly (P˂0.5) more than control and permeated proteins. Also, the water absorption capacity of retentate proteins (18.85 g Water/ g protein Retentate 480 min) were more than the other samples (2.54 g Water/ g protein Permeate 90 min). Whereas, oil absorption capacity was significantly (P˂0.5) depended on diafiltration time and process. In a way that, by increasing the time this parameter dropped in all of the samples. It was also found that, the oil absorption of retentate samples (59.09 g oil/ g protein Retentate 90 min) were significantly (P˂0.5) more than the permeate ones (32.13 g oil/ g protein Permeate 90 min). Emulsifying activity and solubility of retentate samples were significantly grew by addition of diafiltration time, while these indexes reduced in permeate samples. The thermal analysis of retentate sample (with 480 diafiltration time) indicated that, it had higher water absorption capacity than control.

کلیدواژه‌ها English

Diafiltration
Functional properties
potato
Protein Extraction
ultrafiltration
[1] Faridi Myvan, F., Jami Al-Ahmadi, M., Eslami, S. V., & Shojaei Noferest, K. (2022). Role of potassium in modifying the potato physiological responses to irrigation regimes under different planting patterns. Potato Research, 1-20.
[2] Singh, J., Colussi, R., McCarthy, O. J., & Kaur, L. (2016). Potato starch and its modification. In Advances in potato chemistry and technology (pp. 195-247). Academic Press.
[3] Leonel, M., Do Carmo, E. L., Fernandes, A. M., Soratto, R. P., Ebúrneo, J. A. M., Garcia, É. L., & Dos Santos, T. P. R. (2017). Chemical composition of potato tubers: the effect of cultivars and growth conditions. Journal of food science and technology, 54(8), 2372-2378.
[4] Hussain, M., Qayum, A., Xiuxiu, Z., Liu, L., Hussain, K., Yue, P., ... & Li, X. (2021). Potato protein: An emerging source of high quality and allergy free protein, and its possible future based products. Food Research International, 148, 110583.
[5] Karimi, F., Hamidian, Y., Behrouzifar, F., Mostafazadeh, R., Ghorbani-HasanSaraei, A., Alizadeh, M., Mortazavi, S.M., Janbazi, M. and Asrami, P.N. (2022). An applicable method for extraction of whole seeds protein and its determination through Bradford's method. Food and Chemical Toxicology, 164, 113053.
[6] Wojnowska, I., Poznanski, S., & Bednarski, W. (1982). Processing of potato protein concentrates and their properties. Journal of Food Science, 47(1), 167-172.
[7] Ralet, M. C., & Guéguen, J. (2000). Fractionation of potato proteins: solubility, thermal coagulation and emulsifying properties. LWT-Food Science and Technology, 33(5), 380-387.
[8] Ovissipour, M., Kenari, A. A., Motamedzadegan, A., Rasco, B., & Nazari, R. M. (2011). Optimization of protein recovery during hydrolysis of yellowfin tuna (Thunnus albacares) visceral proteins. Journal of Aquatic Food Product Technology, 20(2), 148-159.
[9] Waglay, A., Karboune, S., & Alli, I. (2014). Potato protein isolates: Recovery and characterization of their properties. Food chemistry, 142, 373-382.
[10] Waglay, A., Achouri, A., Karboune, S., Zareifard, M. R., & L'Hocine, L. (2019). Pilot plant extraction of potato proteins and their structural and functional properties. LWT, 113, 108275.
[11] Omrani Khiabanian, N., Motamedzadegan, A., Naghizadeh Raisi, S., & Alimi, M. (2020). Chemical, textural, rheological, and sensorial properties of wheyless feta cheese as influenced by replacement of milk protein concentrate with pea protein isolate. Journal of texture studies, 51(3), 488-500.
[12] Mohammadi, A., Shahidi, S. A., Rafe, A., Naghizadeh Raeisi, S., & Ghorbani-HasanSaraei, A. (2022). Extraction and characterization of rice bran protein and its utilization in low-fat dairy dessert as a substitute for dairy protein. Journal of food science and technology (Iran), 19(124), 157-170.
[13] Miedzianka, J., Pęksa, A., & Aniołowska, M. (2012). Properties of acetylated potato protein preparations. Food Chemistry, 133(4), 1283-1291.
[14] Dabestani, S., Arcot, J., & Chen, V. (2017). Protein recovery from potato processing water: Pre-treatment and membrane fouling minimization. Journal of Food Engineering, 195, 85-96.
[15] AOAC (American Society of Brewing Chemists). (1958). Methods of analysis. American Society of brewing chemists. 16th ed. Washington, DC. Methods No. 923.03, 925.09, 960.36, 996.11.
[16] Van Gelder, W. M. J. (1981). Conversion factor from nitrogen to protein for potato tuber protein. Potato Research, 24(4), 423-425.
[17] Wu, H., Wang, Q., Ma, T., & Ren, J. (2009). Comparative studies on the functional properties of various protein concentrate preparations of peanut protein. Food Research International, 42(3), 343-348.
[18] Mazinani, S., Motamedzadegan, A., Naghizadeh Raeisi, S., & Alimi, M. (2020). Impact of pea protein isolate in partial substitution of milk protein concentrate on the microstructural, rheological, and sensory properties of bacteriologically acidified feta‐type cheese. Journal of Food Processing and Preservation, 44(6), e14448.
[19] Ghorbani‐HasanSaraei, A., Rafe, A., Shahidi, S. A., & Atashzar, A. (2019). Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition. Food Science & Nutrition, 7(2), 875-881.
[20] Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., & Nickerson, M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food research international, 76, 31-38.
[21] Karaca, A. C., Low, N., & Nickerson, M. (2011). Emulsifying properties of canola and flaxseed protein isolates produced by isoelectric precipitation and salt extraction. Food Research International, 44(9), 2991-2998.
[22] Liang, H. N., & Tang, C. H. (2013). pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33(2), 309-319.
[23] Zhang, M., Mu, T-H. (2017). Antioxidant peptides from sweet potato protein hydrolysates by alcalase under high pressure. Innovative Food science & Emerging Technology, 43, 92-101.
[24] Fu, Y., Liu, W. N., & Soladoye, O. P. (2020). Towards potato protein utilisation: Insights into separation, functionality and bioactivity of patatin. International Journal of Food Science & Technology, 55(6), 2314-2322.
[25] Mu, T. H., Tan, S. S., & Xue, Y. L. (2009). The amino acid composition, solubility and emulsifying properties of sweet potato protein. Food Chemistry, 112(4), 1002-1005.
[26] Van Koningsveld, G. A., Gruppen, H., de Jongh, H. H., Wijngaards, G., van Boekel, M. A., Walstra, P., & Voragen, A. G. (2001). Effects of pH and heat treatments on the structure and solubility of potato proteins in different preparations. Journal of Agricultural and Food Chemistry, 49(10), 4889-4897.
[27] Sarabi‐Aghdam, V., Hosseini‐Parvar, S. H., Motamedzadegan, A., & Razi, S. M. (2021). Phase behavior and rheological properties of basil seed gum/whey protein isolate mixed dispersions and gels. Food Science & Nutrition, 9(4), 1881-1895.
[28] Naghizadeh Raeisi, S., Mohamadi Rami, A., Shahidi, S. A., & Ghorbani-HasanSaraei, A. (2019). Functional characteristics of rice bran protein isolate (Hashemi cultivar). Journal of food science and technology (Iran), 15(85), 467-478.
[29] van Koningsveld, G. A., Gruppen, H., de Jongh, H. H. J., Wijngaards, G., van Boekel, M. A. J. S., Walstra, P., & Voragen, A. G. J. (2002). The solubility of potato proteins from industrial potato fruit juice as influenced by pH and various additives. Journal of the Science of Food and Agriculture, 82(1), 134-142.
[30] Ribeiro, C., Santos, E. T., Costa, L., Brazinha, C., Saraiva, P., & Crespo, J. G. (2022). Nannochloropsis sp. Biorefinery: Recovery of Soluble Protein by Membrane Ultrafiltration/Diafiltration. Membranes, 12(4), 401.
[31] Zwijnenberg, H. J., Kemperman, A. J., Boerrigter, M. E., Lotz, M., Dijksterhuis, J. F., Poulsen, P. E., & Koops, G. H. (2002). Native protein recovery from potato fruit juice by ultrafiltration. Desalination, 144(1-3), 331-334.
[32] Chen, Y., Chen, J., Chang, C., Chen, J., Cao, F., Zhao, J., ... & Zhu, J. (2019). Physicochemical and functional properties of proteins extracted from three microalgal species. Food Hydrocolloids, 96, 510-517.
[33] Bao, Y., & Ertbjerg, P. (2019). Effects of protein oxidation on the texture and water-holding of meat: A review. Critical Reviews in Food Science and Nutrition, 59(22), 3564-3578.
[34] Ma, D., & Kim, Y. H. B. (2020). Proteolytic changes of myofibrillar and small heat shock proteins in different bovine muscles during aging: Their relevance to tenderness and water-holding capacity. Meat science, 163, 108090.
[35] Jukkola, A., Partanen, R., Rojas, O. J., & Heino, A. (2018). Effect of heat treatment and pH on the efficiency of micro-diafiltration for the separation of native fat globules from cream in butter production. Journal of Membrane Science, 548, 99-107.
[36] Kinsella, J. E. (1979). Functional properties of soy proteins. Journal of the American Oil Chemists' Society, 56(3Part1), 242-258.
[37] Jeżowski, P., Polcyn, K., Tomkowiak, A., Rybicka, I., & Radzikowska, D. (2020). Technological and antioxidant properties of proteins obtained from waste potato juice. Open Life Sciences, 15(1), 379-388.
[38] Goodarzi, F., & Zendehboudi, S. (2019). A comprehensive review on emulsions and emulsion stability in chemical and energy industries. The Canadian Journal of Chemical Engineering, 97(1), 281-309.
[39] García-Moreno, P.J., Jacobsen, C., Marcatili, P., Gregersen, S., Overgaard, M.T., Andersen, M.L., Sørensen, A.D.M. and Hansen, E.B. (2020). Emulsifying peptides from potato protein predicted by bioinformatics: Stabilization of fish oil-in-water emulsions. Food Hydrocolloids, 101, 105529.
[40] Schmidt, J. M., Damgaard, H., Greve-Poulsen, M., Larsen, L. B., & Hammershøj, M. (2018). Foam and emulsion properties of potato protein isolate and purified fractions. Food Hydrocolloids, 74, 367-378.
[41] Elsohaimy, S. A., Refaay, T. M., & Zaytoun, M. A. M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2), 297-305.
[42] Jing, Y., Huang, J., & Yu, X. (2019). Maintenance of the antioxidant capacity of fresh-cut pineapple by procyanidin-grafted chitosan. Postharvest Biology and Technology, 154, 79-86.
[43] Li, S., Li, J., Zhu, Z., Cheng, S., He, J., & Lamikanra, O. (2020). Soluble dietary fiber and polyphenol complex in lotus root: Preparation, interaction and identification. Food Chemistry, 314, 126219.