[1] Wang, Z., Zhang, S., & Vardhanabhuti, B., (2015). Foaming Properties of Whey Protein Isolate and λ -Carrageenan Mixed Systems. Journal of Food Science, 80(8): 1893–1902.
[2] Schmitt, C., Sanchez, C., Desobry-banon, S., Hardy, J., Schmitt, C., Sanchez, C., Hardy, J., (1998). Structure and Technofunctional Properties of Protein-Polysaccharide Complexes : A Review. Critical Reviews in Food Science and Nutrition, 38(8): 689–753.
[3] Oduse, K., Campbell, L., Lonchamp, J., & Euston, S. R., (2018). Electrostatic complexes of whey protein and pectin as foaming and emulsifying agents. International Journal of Food Properties, 20(3): 3027–3041.
[4] Zhao, Y., Khalid, N., Shu, G., Neves, M. A., Kobayashi, I., & Nakajima, M., (2018). Complex coacervates from gelatin and octenyl succinic anhydride modi fi ed kudzu starch : Insights of formulation and characterization. Food Hydrocolloids, 86(1): 70–77.
[5] Wijaya, W., Patel, A., Setiowati, A., Meeren, P., (2017). Functional colloids from proteins and polysaccharides for food applications. Trends in Food Science & Technology, 68(1): 56–69.
[6] Firebaugh, J. D., Daubert, C. R., Firebaugh, J. D., & Daubert, C. R., (2007). Emulsifying and Foaming Properties of a derivatized whey protein ingredient of a derivatized whey protein ingredient. International Journal of Food Properties, 8(1): 243–253.
[7] Hou, P., Pu, F., Zou, H., Diao, M., Zhao, C., & Xi, C., (2019). Whey protein stabilized nanoemulsion : A potential delivery system for ginsenoside Rg3 whey protein stabilized nanoemulsion : Potential Rg3 delivery system. Food Bioscience, 31(1): 1–8.
[8] Abbas, S., Bashari, M., Akhtar, W., Wei, W., & Zhang, X., (2014). Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrasonics - Sonochemistry, 21(4): 1265–1274.
[9] Séverin, S., & Wen-shui, X. I. A., (2006). Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. Journal of Zhejiang University SCIENCE B, 7(2): 90–98.
[10] Yang, X., Li, A., Li, X., Sun, A., Guo, Y., (2020). An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures. Trends in Food Science & Technology, 102(1): 1–15.
[11] Karthik, P., Ettelaie, R., & Chen, J., (2019). Oral behaviour of emulsions stabilized by mixed monolayer. Food Research International, 125(5): 1–13.
[12] Li, L., Xiao, N., Li, M., & Xie, X., (2018). Physical Properties of Oil-in-Water Nanoemulsions Stabilized by OSA-modified Starch for the Encapsulation of Lycopene. Colloids and Surfaces A, 552(1): 59–66.
[13] Magnusson, E., & Nilsson, L., (2011). Interactions between hydrophobically modified starch and egg yolk proteins in solution and emulsions. Food Hydrocolloids, 25(4): 764–772.
[14] Torres, O., Murray, B., & Sarkar, A., (2016). Emulsion microgel particles : Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology, 55(1): 98–108.
[15] Wu, B., & Macclements, J. D., (2015). Microgels formed by electrostatic complexation of gelatin and OSA starch : Potential fat or starch mimetics. Food Hydrocolloids, 47(1): 87–93.
[16] Sadahira, M. S., Rezende, F. C., Rodrigues, M. I., Yamada, A. T., Cunha, R. L., & Netto, F. M., (2015). Effect of pH and interaction between egg white protein and hydroxypropymethylcellulose in bulk aqueous medium on foaming properties. Carbohydrate Polymers, 125(1): 26–34.
[17] Razavi, S. M. A., Bostan, A., NikNia, S. and Razmkhah, S., (2011). Functional properties of hydrocolloid extracted from selected domestic Iranian seeds. Journal of Food Researches (University of Tabriz), 21(3): 379–389.
[18] Kelvin, Lord. (2017). Bubble size measurements and foam test methods. (R. J. Pugh, Ed.) (1st ed.). Nottingham Trent University: Cambridge University Press.
[19] Khoolosi, Z. Mazaheri Tehrani, M. and Razavi, S.M.A., (2021), Optimization of the interaction of whey protein concentrate-cress seed gum using response surface methodology (RSM) and investigating the foaming properties of the optimal sample, Iranian Food Science and Technology Research Journal, 17(4): 70, 437-449.
[20] Berg, M. Van Den, Jara, F. L., & Pilosof, A. M. R., (2015). Performance of egg white and hydroxypropylmethylcellulose mixtures on gelation and foaming. Food Hydrocolloids, 48, 282–291.
[21] Ganzevles, R. A., Kosters, H., Vliet, T. Van, Stuart, M. A. C., & Jongh, H. H. J. De., (2007). Polysaccharide Charge Density Regulating Protein Adsorption to Air / Water Interfaces by Protein / Polysaccharide Complex Formation. American Chemical Society, 111(45): 12969–12976.
[22] Perez, A., Carrara, C. R., Sa, C. C., & Rodrı, J. M., (2010). Interfacial and Foaming Characteristics of Milk Whey Protein and Polysaccharide Mixed Systems. American Institute of Chemical Engineers, 56(4): 1107–1117.
[22] Jarpa-parra, M., Tian, Z., Temelli, F., Zeng, H., & Chen, L., (2016). Understanding the stability mechanisms of lentil legumin-like protein and polysaccharide foams. Food Hydrocolloids, 61(1): 903–913.
[23] Kuropatwa, M., Tolkach, A., & Kulozik, U., (2009). Impact of pH on the interactions between whey and egg white proteins as assessed by the foamability of their mixtures. Food Hydrocolloids, 23(8): 2174–2181.