کاربردهای نقاط کوانتومی کربن در تشخیص و بسته‌بندی مواد غذایی

نویسندگان
1 دانش آموخته کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2 دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
چکیده
نقاط کوانتومی کربن نسل جدیدی از نانو ذرات کربن هستند که به علت دارا بودن خصوصیات منحصر به فرد همچون ویژگی‌های فلورسانس عالی، سنتز آسان، زیست‌سازگاری مناسب، گروه‌های عملکردی فراوان و سمیت پایین پتانسیل خوبی برای آنالیز مواد غذایی و استفاده در بسته‌بندی‌ها دارند. امروزه نقاط کوانتومی کربن به دلیل عدم سمیت جایگزین نقاط کوانتومی نیمه هادی شده‌اند. استفاده از نقاط کربن در مواد بسته‌بندی به دلیل دارا بودن خاصیت آنتی‌اکسیدانی، ضدمیکروبی و سدکنندگی سبب افزایش زمان نگهداری محصول، کاهش رشد میکروارگانیسم‌ها، بهبود ویژگی‌های مکانیکی، ایجاد مانع در برابر گازها، نور ماورای بنفش و کاهش ضایعات غذایی می‌شود. هدف این مقاله آشنایی با نقاط کوانتومی کربن، روش‌های سنتز و بررسی ویژگی نوری آن‌ها می‌باشد. سپس اصول طراحی حسگر فلورسانس شامل مکانیسم پوشش و بازیابی فلورسانس و کاربرد آن‌ها در نمونه‌های غذایی جهت تشخیص افزودنی‌های غذا‌، پاتوژن‌ها، بقایای آنتی‌بیوتیک‌ها، حشره‌کش‌ها، فلزات سنگین و مواد تغذیه‌ای مورد بررسی قرار خواهد گرفت. در نهایت، کاربرد نقاط کربن در بسته‌بندی‌های بهبودیافته، فعال، هوشمند و بسته‌بندی زیستی بیان خوهد شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Applications of carbon quantum dots in detection and packaging of foods

نویسندگان English

shabnam sistani 1
Hajar Shekarchizadeh 2
1 Graduated Master, Department of Food Science and Technology, College of Agriculture,Isfahan University of Technology
2 Associate Professor, Department of Food Science and Technology, College of Agriculture,Isfahan University of Technology
چکیده English

Carbon quantum dots are a new generation of carbon nanoparticles that have good potential for food analysis and packaging due to their unique properties such as excellent fluorescence properties, easy synthesis, good biocompatibility, large functional groups, and low toxicity. Today, carbon quantum dots have replaced semiconductor quantum dots due to their non-toxicity. The use of carbon dots in packaging materials due to their antioxidant, antimicrobial and barrier properties increases product shelf life, reduces the growth of microorganisms, improves mechanical properties, the barrier against gases, UV light blocker, and reduces food waste. This paper aims to get acquainted with carbon quantum dots and synthesis methods and study their optical properties. Then, the principles of fluorescence sensor design, including the mechanism of fluorescence quenching and recovery and their application in food samples to detect food additives, pathogens, antibiotic residues, insecticides, heavy metals, and nutrients will be examined. Finally, the use of carbon dots in improved, active, intelligent and bio-packaging will then be discussed.

کلیدواژه‌ها English

packaging
Nanosensor
Carbon quantum dots
Fluorescence
[1] Moradi M, Molaei R, Kousheh SA, T. Guimarães J, McClements DJ. 2021. Carbon dots synthesized from microorganisms and food by-products: active and smart food packaging applications. Critical Reviews in Food Science and Nutrition. 1-17.
[2] Luo X, Han Y, Chen X, Tang W, Yue T, Li Z. 2020. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends in Food Science & Technology. 95:149-61.
[3] Yoo D, Park Y, Cheon B, Park M-H. 2019. Carbon dots as an effective fluorescent sensing platform for metal ion detection. Nanoscale research letters. 14(1):1-13.
[4] Zhao L, Zhang M, Mujumdar AS, Wang H. 2022. Application of carbon dots in food preservation: a critical review for packaging enhancers and food preservatives. Critical Reviews in Food Science and Nutrition. 1-19.
[5] Dong Y, Cai J, Chi Y. 2016. Carbon based dots and their luminescent properties and analytical applications. Carbon nanoparticles and nanostructures: Springer. 161-238.
[6] Molaei MJ. 2020. Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Analytical Methods. 12(10):1266-87.
[7] Demchenko AP, Dekaliuk MO. 2013. Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods and applications in fluorescence. 1(4):042001.
[8] Chu K-W, Lee SL, Chang C-J, Liu L. 2019. Recent progress of carbon dot precursors and photocatalysis applications. Polymers. 11(4):689.
[9] Sharma A, Das J. 2019. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. Journal of nanobiotechnology. 17(1):1-24.
[10] Sagbas S, Sahiner N. 2019. Carbon dots: preparation, properties, and application. Nanocarbon and its Composites: Elsevier. 651-76.
[11]‌‌ Qu J-H, Wei Q, Sun D-W. 2018. Carbon dots: Principles and their applications in food quality and safety detection. Critical reviews in food science and nutrition. 58(14):2466-75.
[12] Liu H, Ding J, Zhang K, Ding L. 2019. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC Trends in Analytical Chemistry. 118:315-37.
[13] Zhao Q, Song W, Zhao B, Yang B. 2020. Spectroscopic studies of the optical properties of carbon dots: recent advances and future prospects. Materials Chemistry Frontiers. 4(2):472-88.
[14] Yan F, Sun Z, Zhang H, Sun X, Jiang Y, Bai Z. 2019. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchimica Acta. 186(8):1-37.
[15] Anwar S, Ding H, Xu M, Hu X, Li Z, Wang J, et al. 2019. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Applied Bio Materials. 2(6):2317-38.
[16] Tang J, Zhang J, Zhang Y, Xiao Y, Shi Y, Chen Y, et al. 2019. Influence of group modification at the edges of carbon quantum dots on fluorescent emission. Nanoscale Research Letters. 14(1):1-10.
[17] Gayen B, Palchoudhury S, Chowdhury J. 2019. Carbon dots: A mystic star in the world of nanoscience. Journal of Nanomaterials. 2019.
[18] Li L, Dong T. 2018.Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. Journal of Materials Chemistry C. 6(30):7944-70.
[19] Yan F, Jiang Y, Sun X, Bai Z, Zhang Y, Zhou X. 2018. Surface modification and chemical functionalization of carbon dots: a review. Microchimica Acta. 185(9):1-34.
[20] Hu S. 2016. Tuning optical properties and photocatalytic activities of carbon‐based “quantum dots” through their surface groups. The Chemical Record. 16(1):219-30.
[21] Dimos K. 2018. Tuning carbon dots’ optoelectronic properties with polymers. Polymers. 10(12):1312.
[22] Chen BB, Liu ML, Li CM, Huang CZ. 2019. Fluorescent carbon dots functionalization. Advances in colloid and interface science. 270:165-90.
[23] Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreeprasad TS, et al. 2016. Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B. 4(45):7204-19.
[24] Sun X, Lei Y. 2017. Fluorescent carbon dots and their sensing applications. TrAC Trends in Analytical Chemistry. 89:163-80.
[25] Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, et al. 2017. The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchimica Acta. 184(7):1899-914.
[26] Zhang J, Zhou R, Tang D, Hou X, Wu P. 2019. Optically-active nanocrystals for inner filter effect-based fluorescence sensing: achieving better spectral overlap. TrAC Trends in Analytical Chemistry. 110:183-90.
[27] Chen S, Yu Y-L, Wang J-H. 2018. Inner filter effect-based fluorescent sensing systems: a review. Analytica chimica acta. 999:13-26.
[28] Li X, Que L. 2014. Fluorescence enhancement enabled by nanomaterials and nanostructured substrates: a brief review. Reviews in Nanoscience and Nanotechnology. 3(3):161-76.
[29] Liu M-L, Chen B-B, Li C-M, Huang C-Z. 2019. Carbon dots prepared for fluorescence and chemiluminescence sensing. Science China Chemistry. 62(8):968-81.
[30] Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z. 2016. An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchimica Acta. 183(7):2197-203.
[31] BelBruno JJ. 2018. Molecularly imprinted polymers. Chemical reviews. 119(1):94-119.
[32] Azizi A, Bottaro CS. 2020. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. Journal of Chromatography A. 1614:460603.
[33] Song-Ling Y, HUANG J-J, Lin L, Hui-Jun F, Yuan-Ming S, Yu-Dong S, et al. 2017. Preparation of carbon dots and their application in food analysis as signal probe. Chinese Journal of Analytical Chemistry. 45(10):1571-81.
[34] Huang C-C, Hung Y-S, Weng Y-M, Chen W, Lai Y-S. 2019. Sustainable development of carbon nanodots technology: Natural products as a carbon source and applications to food safety. Trends in Food Science & Technology. 86:144-52.
[35] Yang T, Huang H, Zhu F, Lin Q, Zhang L, Liu J. 2016. Recent progresses in nanobiosensing for food safety analysis. Sensors. 16(7):1118.
[36] Ma Y, Zhang Z, Xu Y, Ma M, Chen B, Wei L, et al. 2016. A bright carbon-dot-based fluorescent probe for selective and sensitive detection of mercury ions. Talanta. 161:476-81.
[37] Nsibande S, Forbes P. 2016. Fluorescence detection of pesticides using quantum dot materials–a review. Analytica Chimica Acta. 945:9-22.
[38] Wang Q, Zhao W-M. 2018. Optical methods of antibiotic residues detections: A comprehensive review. Sensors and Actuators B: Chemical. 269:238-56.
[39] Guo F, Zhu Z, Zheng Z, Jin Y, Di X, Xu Z, et al. 2020. Facile synthesis of highly efficient fluorescent carbon dots for tetracycline detection. Environmental Science and Pollution Research. 27(4):4520-7.
[40] Liu J, Chen Y, Wang W, Feng J, Liang M, Ma S, et al. 2016. “Switch-on” fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots–MnO2 probe. Journal of agricultural and food chemistry. 64(1):371-80.
[41] Wang J, Wei J, Su S, Qiu J. 2015. Novel fluorescence resonance energy transfer optical sensors for vitamin B 12 detection using thermally reduced carbon dots. New Journal of Chemistry. 39(1):501-7.
[42] Majumdar S, Bhattacharjee T, Thakur D, Chowdhury D. 2018. Carbon Dot based Fluorescence sensor for Retinoic acid. ChemistrySelect. 3(2):673-7.
[43] Kalpana S, Priyadarshini S, Leena MM, Moses J, Anandharamakrishnan C. 2019. Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology. 93:145-57.
[44] Emamhadi MA, Sarafraz M, Akbari M, Fakhri Y, Linh NTT, Khaneghah AM. 2020. Nanomaterials for food packaging applications: a systematic review. Food and Chemical Toxicology. 146:111825.
[45] Primožič M, Knez Ž, Leitgeb M. 2021. (Bio) Nanotechnology in food science—food packaging. Nanomaterials. 11(2):292.
[46] Thippeswamy BH, Maligi AS, Hegde G. 2021. Roadmap of Effects of Biowaste-Synthesized Carbon Nanomaterials on Carbon Nano-Reinforced Composites. Catalysts. 11(12):1485.
[47] Bacakova L, Pajorova J, Tomkova M, Matejka R, Broz A, Stepanovska J, et al. 2020. Applications of nanocellulose/nanocarbon composites: Focus on biotechnology and medicine. Nanomaterials. 10(2):196.
[48] Xu L, Zhang Y, Pan H, Xu N, Mei C, Mao H, et al. 2019. Preparation and performance of radiata-pine-derived polyvinyl alcohol/carbon quantum dots fluorescent films. Materials. 13(1):67.
[49] You Y, Zhang H, Liu Y, Lei B. 2016. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots. Carbohydrate Polymers. 151:245-50.
[50] Xu L, Li Y, Gao S, Niu Y, Liu H, Mei C, et al. 2020. Preparation and properties of cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite. Polymers. 12(5):1143.
[51] Dong X, Liang W, Meziani MJ, Sun Y-P, Yang L. 2020. Carbon dots as potent antimicrobial agents. Theranostics. 10(2):671.
[52] Ezati P, Roy S, Rhim J-W. 2022. Pectin/gelatin-based bioactive composite films reinforced with sulfur functionalized carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 636:128123.
[53] Ezati P, Rhim J-W, Molaei R, Priyadarshi R, Han S. 2022. Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit. Postharvest Biology and Technology. 186:111845.
[54] Fan K, Zhang M, Fan D, Jiang F. 2019. Effect of carbon dots with chitosan coating on microorganisms and storage quality of modified‐atmosphere‐packaged fresh‐cut cucumber. Journal of the Science of Food and Agriculture. 99(13):6032-41.
[55] Silvestre C, Duraccio D, Cimmino S. 2011. Food packaging based on polymer nanomaterials. Progress in polymer science. 36(12):1766-82.
[56] Amin U, Khan MU, Majeed Y, Rebezov M, Khayrullin M, Bobkova E, et al. 2021. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. International Journal of Biological Macromolecules. 183:2184-98.
[57] Mills A. 2009. Oxygen indicators in food packaging. Sensors for environment, health and security: Springer. 371-88.
[58] Xu Y, Yang D, Huo S, Ren J, Gao N, Chen Z, et al. 2021. Carbon dots and ruthenium doped oxygen sensitive nanofibrous membranes for monitoring the respiration of agricultural products. Polymer Testing. 93:106957.
[59] Chausali N, Saxena J, Prasad R. 2022. Recent trends in nanotechnology applications of bio-based packaging. Journal of Agriculture and Food Research. 7:100257.
[60] Yang Y, Zhao Y, Hu Y, Peng X, Zhong L. 2020. Xylan-derived light conversion nanocomposite film. Polymers. 12(8):1779.