1. Torbica, A., Belović, M., Mastilović, J., Kevrešan, Ž., Pestorić, M., Škrobot, D., & Hadnađev, T. D. (2016). Nutritional, rheological, and sensory evaluation of tomato ketchup with increased content of natural fibres made from fresh tomato pomace. Food and bioproducts processing, 98, 299-309.
2. Yoo, B., & Rao, M. (1994). Effect of unimodal particle size and pulp content on rheological properties of tomato puree. Journal of Texture Studies, 25(4), 421-436.
3. Persia, M.E., C. M. Parsons, M. Schang and J. Azcona, Nutritional evaluation of dried tomato seeds. poultry science, 2003. 82: p. 141-146
4. Silva, Y., Borba, B. C., Pereira, V. A., Reis, M. G., Caliari, M., Brooks, M. S. L., & Ferreira, T. A. (2019). Characterization of tomato processing by-product for use as a potential functional food ingredient: nutritional composition, antioxidant activity and bioactive compounds. International journal of food sciences and nutrition, 70(2), 150-160.
5. Knoblich, M., B. Anderson and D. Latshaw. 2005. Analyses of tomato peel and seed byproduct and their use as a source of carotenoids. J. Sci. Food Agric. 85: 1166.
6. Laufenberg, G., Kunz, B., & Nystroem, M. (2003). Transformation of vegetable waste into value added products::(A) the upgrading concept;(B) practical implementations. Bioresource technology, 87(2), 167-198.
7. Farahnaky, A., Abbasi, A., Jamalian, J., Mesbahi, G. 2008. The use of tomato pulp powder as thickening agent in the formulation of tomato ketchup. Journal of texture studies, 39: 169-182.
8. Sogi, D. S., Sidhu, J. S., Arora, M. S., Garg, S. K., and Bawa, A. S. 2002. Effect of tomato seed meal supplementation on the dough and bread characteristics of wheat (PBW 343) flour. International journal of Food Propeteis. 5: 563-571.
9. Del Valle, M., Cámara, M., and Torija, M. A. E. 2003. Effect of pomace addition on tomato paste quality. Anti-Counterfeiting Trade Agreement, 613: 399-405.
10. Hayes, W.A., Smith, P.G., and Morris, A.E.J. 1998. The Production and quality of tomato concentrates. Critical Reviews in Food Science and Nutrition, 38(7): 537-564.
11. Moelants K R., Cardinaels, R., De Greef, K., Daels, E., Van Buggenhout, S., Van Loey, A. M., Molaenaers, P., and Hendrickx, M. E. 2013. Effect of calcium ions and pH on the structure and rheology of carrot-derived suspensions. Food Hydrocolloids, 36:382-391.
12. Farahnaky, A., Abbasi, A., Jamalian, J., & Mesbahi, G. (2008). The use of tomato pulp powder as a thickening agent in the formulation of tomato ketchup. Journal of texture studies, 39(2), 169-182.
13. Ranganna, S. 1991. Hand book of Analysis and Quality Control for Fruit and Vegetable Products. 2nd ed., McGraw-Hill Pub., England.
14. Castro, A., Bergenstal, B., Tornberg, E. Parsnip. 2012. (Pastinaca sativa L.): Dietary fiber composition and physicochemical characterization of its homogenized suspensions. Food Research International, 48: 598-608.
15. Omidbakhsh, E., Nayebzade, K., Mohammadifar, M. A., & Amiri, Z. (2013). Effects of combined modified starch and xanthan gum on the stability and rheological and sensory characteristics of tomato sauce.
16. Mazaheri Tehrani, M. (2007, April). New Method for measuring of tomato paste consistency. In 1st international Chester food science & technology conference.
17. Baranska, M., Schulz, H., Joubert, E., & Manley, M. (2006). In situ flavonoid analysis by FT-Raman spectroscopy: Identification, distribution, and quantification of aspalathin in green rooibos (Aspalathus linearis). Analytical Chemistry, 78(22), 7716-7721.
18. GHOLAMI, M. Z., AHMADI, E., & KARAMI, M. (2017). THE INFLUENCE OF THE COLOR, FIRMNESS AND PROCESSING METHOD OF RAW TOMATOES ON THE PHYSICAL, CHEMICAL CHARACTERISTIC OF TOMATO PASTE.
19. Panahi, E., MOUSAVI, A., SAMIEI, M., & Mirlohi, M. (2019). Comparison of Conventional and Modern Packaging in the Cold Storage of Healthy Tomato Paste and Tomato Paste Contaminated with Aspergillus flavus Spore.
20. PA Silva, Y., Borba, B. C., Pereira, V. A., Reis, M. G., Caliari, M., Brooks, M. S. L., & Ferreira, T. A. (2019). Characterization of tomato processing by-product for use as a potential functional food ingredient: nutritional composition, antioxidant activity and bioactive compounds. International journal of food sciences and nutrition, 70(2), 150-160.
21. Kubo, M. T. K., Augusto, P. E., & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Research International, 51(1), 170-179.
22. MAZAHERI, T. M., & MORTAZAVI, S. G. (2006). Optimizing of conditions preheating tomato in production of tomato paste.
23. Bengtsson, H., and Tornberg, E. 2011. Physicochemical characterization of fruit and vegetable fiber suspensions. I: Effect of homogenization n. Journal of Texture Studies, 42: 268-280.
24. Santiago, J. S. J., Kermani, Z. J., Xu, F., Van Loey, A. M., & Hendrickx, M. E. (2017). The effect of high pressure homogenization and endogenous pectin-related enzymes on tomato purée consistency and serum pectin structure. Innovative food science & emerging technologies, 43, 35-44.
25. Thakur, B. R., Singh, R. K., & Handa, A. K. (1995). Effect of homogenization pressure on consistency of tomato juice 1. Journal of food quality, 18(5), 389-396.
26. Colle, I., Van Buggenhout, S., Van Loey, A., & Hendrickx, M. (2010). High pressure homogenization followed by thermal processing of tomato pulp: Influence on microstructure and lycopene in vitro bioaccessibility. Food Research International, 43(8), 2193-2200.
27. Panozzo, A., Lemmens, L., Van Loey, A., Manzocco, L., Nicoli, M. C., & Hendrickx, M. (2013). Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: a case study on differently coloured tomatoes. Food chemistry, 141(4), 4094-4100.
28. Gallaher, D. M. (1999). U.S. Patent No. 5,965,190. Washington, DC: U.S. Patent and Trademark Office.
29. Kyomugasho, C., Willemsen, K. L., Christiaens, S., Van Loey, A. M., & Hendrickx, M. E. (2015). Pectin-interactions and in vitro bioaccessibility of calcium and iron in particulated tomato-based suspensions. Food Hydrocolloids, 49, 164-175.
30. Karunadasa, K. S., Manoratne, C. H., Pitawala, H. M. T. G. A., & Rajapakse, R. M. G. (2018). Relative stability of hydrated/anhydrous products of calcium chloride during complete dehydration as examined by high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 120, 167-172.
31. Heredia-Guerrero, J. A., Benítez, J. J., Domínguez, E., Bayer, I. S., Cingolani, R., Athanassiou, A., & Heredia, A. (2014). Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in plant science, 5, 305.
32. Kamil, M. M., Mohamed, G. F., & Shaheen, M. S. (2011). Fourier transformer infrared spectroscopy for quality assurance of tomato products. J Am Sci, 7, 559-572.
33. España, L., Heredia‐Guerrero, J. A., Segado, P., Benítez, J. J., Heredia, A., & Domínguez, E. (2014). Biomechanical properties of the tomato (Solanum lycopersicum) fruit cuticle during development are modulated by changes in the relative amounts of its components. New Phytologist, 202(3), 790-802.
34. Johnson, E. J., Dorot, O., Liu, J., Chefetz, B., & Xing, B. (2007). Spectroscopic characterization of aliphatic moieties in four plant cuticles. Communications in soil science and plant analysis, 38(17-18), 2461-2478.
35. Skolik, P., McAinsh, M. R., & Martin, F. L. (2019). ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit. Planta, 249(3), 925-939.
36. Beullens, K., Kirsanov, D., Irudayaraj, J., Rudnitskaya, A., Legin, A., Nicolaï, B. M., & Lammertyn, J. (2006). The electronic tongue and ATR–FTIR for rapid detection of sugars and acids in tomatoes. Sensors and Actuators B: Chemical, 116(1-2), 107-115.
37. Grassino, A. N., Ostojić, J., Miletić, V., Djaković, S., Bosiljkov, T., Zorić, Z., ... & Brnčić, M. (2020). Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science & Emerging Technologies, 64, 102424.
38. Rajabi, H., Jafari, S. M., Feizi, J., Ghorbani, M., & Mohajeri, S. A. (2021). Surface-decorated graphene oxide sheets with nanoparticles of chitosan-Arabic gum for the separation of bioactive compounds: A case study for adsorption of crocin from saffron extract. International Journal of Biological Macromolecules, 186, 1-12.
39. Mahmoud Nasef, M., El-Hefian, E. A., Saalah, S., & Yahaya, A. H. (2011). Preparation and properties of non-crosslinked and ionically crosslinked chitosan/agar blended hydrogel films. E-Journal of Chemistry, 8(S1), S409-S419.
40. Jurić, S., Ferrari, G., Velikov, K. P., & Donsì, F. (2019). High-pressure homogenization treatment to recover bioactive compounds from tomato peels. Journal of food engineering, 262, 170-180.
41. Wang, Y., Sun, P., Li, H., Adhikari, B. P., & Li, D. (2018). Rheological behavior of tomato fiber suspensions produced by high shear and high pressure homogenization and their application in tomato products. International journal of analytical chemistry, 2018.
42. Amirinasab sarabi S, mazaheritehrani M, Haddad khodaparast M H. The effect of whole tomato thermal pretreatment on the physicochemical properties of tomato paste produced with different degree of brix. FSCT. 2021; 18 (115) :17-22
43. XU, S. Y., Shoemaker, C. F., & Luh, B. S. (1986). Effect of break temperature on rheological properties and microstructure of tomato juices and pastes. Journal of food science, 51(2), 399-402.
44. Anthon, G. E., & Barrett, D. M. (2012). Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chemistry, 132(2), 915-920.
45. Huang, X., Yang, Y., Liu, Q., & He, W. Q. (2020). Effect of high pressure homogenization on sugar beet pulp: Physicochemical, thermal and structural properties. LWT, 134, 110177.
46. Hua, X., Xu, S., Wang, M., Chen, Y., Yang, H., & Yang, R. (2017). Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food chemistry, 232, 443-449.