تاثیر استفاده از پوست گوجه فرنگی، کلرید کلسیم، کاهش اندازه ذرات و توزیع پالپ بر خواص فیزیکوشیمیایی و ریزساختار رب گوجه فرنگی

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
چکیده
رب بعنوان یکی از فراورده­های اصلی گوجه­فرنگی همواره از اهمیت بسزایی در صنایع تبدیلی کشور برخوردار بوده است. حدود 5درصد از وزن گوجه­فرنگی ورودی به کارخانجات تولید رب با وجود ارزش غذایی و تکنولوژیکی بالا بصورت ضایعات دورریز می­گردد. هدف از این مطالعه بررسی اثر استفاده از سطوح مختلف پوست گوجه­فرنگی و کلرید کلسیم و جایگزینی فرایند هموژنیزاسیون با آسیاب کلوئیدی بر ویژگی­های رب گوجه­فرنگی با استفاده از روش سطح پاسخ بود. نتایج این پژوهش نشان داد استفاده از پوست گوجه­فرنگی سبب افزایش معنی­دار میزان مواد جامد کل، مواد جامد نامحلول، فیبر، قوام و درصد رسوب وزنی شد (05/0>p). اعمال فرایند هموژنیزاسیون سه­مرحله ای با آسیاب کلوئیدی بخاطر تاثیر بر ویژگی­های ذرات معلق ماتریس رب از جمله کاهش معنی­دار اندازه، تغییر توزیع اندازه ذرات و افزایش مساحت سطحی، سبب بهبود ویسکوزیته محصول گردید. کلریدکلسیم بواسطه واکنش با پکتین موجود در رب و ایجاد شبکه ژلی، قوام محصول را به طور محسوسی افزایش داد. آنالیز میکروسکپی نمونه­ها نشان داد با افزایش تعداد مراحل هموژنیزاسیون از یک تا سه و افزودن پوست، میزان یکنواختی ماتریس افزایش­ یافته و ساختاری متراکم بدست آمد. ایجاد پیک­های جدید و تغییر در شدت پیک­ها در طیف ATR-FTIR اتصال کلرید کلسیم و توزیع فیبر در شبکه رب را تائید نمود. نتایج این پژوهش نشان داد می­توان از پوست گوجه­فرنگی بعنوان یک ترکیب افزایش­دهنده قوام در رب گوجه­فرنگی استفاده نموده و نه­تنها از دورریز بخش عمده­ای از این ترکیب ارزشمند جلوگیری نمود، بلکه ارزش افزوده خوبی نیز برای صنایع تبدیلی کشور ایجاد کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation the effect of addition tomato peel and calcium chloride, particle size reduction and pulp distribution on physicochemical and microstructure properties of tomato paste

نویسندگان English

Saeed Amirinasab sarabi 1
mostafa mazaheritehrani 2
Mohammad hossein Haddad khodaparast 1
1 Department of food science and technology, Agriculture college, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of food science and technology, Agriculture college, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده English

Paste, as one of the main tomato products, has always been of great importance in the food. About 5% (w/w) of the entering the factories, despite their high nutritional and technological value, is discarded as waste. This study aimed to investigate the effect of adding different levels of tomato peel and calcium chloride and replacing the homogenization process with the colloidal mill on the properties of tomato paste through response surface methodology (RSM). The results of this study showed that the use of tomato peel caused a significant increase in the amount of total solids, water-insoluble solids, fiber, consistency and precipitate weight ratio (p <0.05). Applying a three-step homogenization process with a colloidal mill improved the viscosity of the product due to its effect on the properties of suspended particles of the paste matrix, including a significant size reduction, change in particle size distribution and increase surface area. Calcium chloride significantly increased the consistency of the product by reacting with the pectin in the paste and forming a gel network. Microscopic analysis of the samples showed that by increasing the number of homogenization steps from one to three and adding the tomato peel, the matrix uniformity increased and a dense structure was obtained. Creating new peaks and changing the peaks’ intensity at the ATR-FTIR spectrum confirmed the binding of calcium chloride and the fiber distribution in the paste network. The results of this study showed that tomato peel can be used as a consistency-enhancing compound in tomato paste and not only prevent the discarding of a large part of this valuable compound, but also create good added value for the food industry.

کلیدواژه‌ها English

Tomato paste
Tomato peel
Calcium chloride
Colloidal mill
Consistency
1. Torbica, A., Belović, M., Mastilović, J., Kevrešan, Ž., Pestorić, M., Škrobot, D., & Hadnađev, T. D. (2016). Nutritional, rheological, and sensory evaluation of tomato ketchup with increased content of natural fibres made from fresh tomato pomace. Food and bioproducts processing, 98, 299-309.
2. Yoo, B., & Rao, M. (1994). Effect of unimodal particle size and pulp content on rheological properties of tomato puree. Journal of Texture Studies, 25(4), 421-436.
3. Persia, M.E., C. M. Parsons, M. Schang and J. Azcona, Nutritional evaluation of dried tomato seeds. poultry science, 2003. 82: p. 141-146
4. Silva, Y., Borba, B. C., Pereira, V. A., Reis, M. G., Caliari, M., Brooks, M. S. L., & Ferreira, T. A. (2019). Characterization of tomato processing by-product for use as a potential functional food ingredient: nutritional composition, antioxidant activity and bioactive compounds. International journal of food sciences and nutrition, 70(2), 150-160.
5. Knoblich, M., B. Anderson and D. Latshaw. 2005. Analyses of tomato peel and seed byproduct and their use as a source of carotenoids. J. Sci. Food Agric. 85: 1166.
6. Laufenberg, G., Kunz, B., & Nystroem, M. (2003). Transformation of vegetable waste into value added products::(A) the upgrading concept;(B) practical implementations. Bioresource technology, 87(2), 167-198.
7. Farahnaky, A., Abbasi, A., Jamalian, J., Mesbahi, G. 2008. The use of tomato pulp powder as thickening agent in the formulation of tomato ketchup. Journal of texture studies, 39: 169-182.
8. Sogi, D. S., Sidhu, J. S., Arora, M. S., Garg, S. K., and Bawa, A. S. 2002. Effect of tomato seed meal supplementation on the dough and bread characteristics of wheat (PBW 343) flour. International journal of Food Propeteis. 5: 563-571.
9. Del Valle, M., Cámara, M., and Torija, M. A. E. 2003. Effect of pomace addition on tomato paste quality. Anti-Counterfeiting Trade Agreement, 613: 399-405.
10. Hayes, W.A., Smith, P.G., and Morris, A.E.J. 1998. The Production and quality of tomato concentrates. Critical Reviews in Food Science and Nutrition, 38(7): 537-564.
11. Moelants K R., Cardinaels, R., De Greef, K., Daels, E., Van Buggenhout, S., Van Loey, A. M., Molaenaers, P., and Hendrickx, M. E. 2013. Effect of calcium ions and pH on the structure and rheology of carrot-derived suspensions. Food Hydrocolloids, 36:382-391.
12. Farahnaky, A., Abbasi, A., Jamalian, J., & Mesbahi, G. (2008). The use of tomato pulp powder as a thickening agent in the formulation of tomato ketchup. Journal of texture studies, 39(2), 169-182.
13. Ranganna, S. 1991. Hand book of Analysis and Quality Control for Fruit and Vegetable Products. 2nd ed., McGraw-Hill Pub., England.
14. Castro, A., Bergenstal, B., Tornberg, E. Parsnip. 2012. (Pastinaca sativa L.): Dietary fiber composition and physicochemical characterization of its homogenized suspensions. Food Research International, 48: 598-608.
15. Omidbakhsh, E., Nayebzade, K., Mohammadifar, M. A., & Amiri, Z. (2013). Effects of combined modified starch and xanthan gum on the stability and rheological and sensory characteristics of tomato sauce.
16. Mazaheri Tehrani, M. (2007, April). New Method for measuring of tomato paste consistency. In 1st international Chester food science & technology conference.
17. Baranska, M., Schulz, H., Joubert, E., & Manley, M. (2006). In situ flavonoid analysis by FT-Raman spectroscopy: Identification, distribution, and quantification of aspalathin in green rooibos (Aspalathus linearis). Analytical Chemistry, 78(22), 7716-7721.
18. GHOLAMI, M. Z., AHMADI, E., & KARAMI, M. (2017). THE INFLUENCE OF THE COLOR, FIRMNESS AND PROCESSING METHOD OF RAW TOMATOES ON THE PHYSICAL, CHEMICAL CHARACTERISTIC OF TOMATO PASTE.
19. Panahi, E., MOUSAVI, A., SAMIEI, M., & Mirlohi, M. (2019). Comparison of Conventional and Modern Packaging in the Cold Storage of Healthy Tomato Paste and Tomato Paste Contaminated with Aspergillus flavus Spore.
20. PA Silva, Y., Borba, B. C., Pereira, V. A., Reis, M. G., Caliari, M., Brooks, M. S. L., & Ferreira, T. A. (2019). Characterization of tomato processing by-product for use as a potential functional food ingredient: nutritional composition, antioxidant activity and bioactive compounds. International journal of food sciences and nutrition, 70(2), 150-160.
21. Kubo, M. T. K., Augusto, P. E., & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Research International, 51(1), 170-179.
22. MAZAHERI, T. M., & MORTAZAVI, S. G. (2006). Optimizing of conditions preheating tomato in production of tomato paste.
23. Bengtsson, H., and Tornberg, E. 2011. Physicochemical characterization of fruit and vegetable fiber suspensions. I: Effect of homogenization n. Journal of Texture Studies, 42: 268-280.
24. Santiago, J. S. J., Kermani, Z. J., Xu, F., Van Loey, A. M., & Hendrickx, M. E. (2017). The effect of high pressure homogenization and endogenous pectin-related enzymes on tomato purée consistency and serum pectin structure. Innovative food science & emerging technologies, 43, 35-44.
25. Thakur, B. R., Singh, R. K., & Handa, A. K. (1995). Effect of homogenization pressure on consistency of tomato juice 1. Journal of food quality, 18(5), 389-396.
26. Colle, I., Van Buggenhout, S., Van Loey, A., & Hendrickx, M. (2010). High pressure homogenization followed by thermal processing of tomato pulp: Influence on microstructure and lycopene in vitro bioaccessibility. Food Research International, 43(8), 2193-2200.
27. Panozzo, A., Lemmens, L., Van Loey, A., Manzocco, L., Nicoli, M. C., & Hendrickx, M. (2013). Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: a case study on differently coloured tomatoes. Food chemistry, 141(4), 4094-4100.
28. Gallaher, D. M. (1999). U.S. Patent No. 5,965,190. Washington, DC: U.S. Patent and Trademark Office.
29. Kyomugasho, C., Willemsen, K. L., Christiaens, S., Van Loey, A. M., & Hendrickx, M. E. (2015). Pectin-interactions and in vitro bioaccessibility of calcium and iron in particulated tomato-based suspensions. Food Hydrocolloids, 49, 164-175.
30. Karunadasa, K. S., Manoratne, C. H., Pitawala, H. M. T. G. A., & Rajapakse, R. M. G. (2018). Relative stability of hydrated/anhydrous products of calcium chloride during complete dehydration as examined by high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 120, 167-172.
31. Heredia-Guerrero, J. A., Benítez, J. J., Domínguez, E., Bayer, I. S., Cingolani, R., Athanassiou, A., & Heredia, A. (2014). Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in plant science, 5, 305.
32. Kamil, M. M., Mohamed, G. F., & Shaheen, M. S. (2011). Fourier transformer infrared spectroscopy for quality assurance of tomato products. J Am Sci, 7, 559-572.
33. España, L., Heredia‐Guerrero, J. A., Segado, P., Benítez, J. J., Heredia, A., & Domínguez, E. (2014). Biomechanical properties of the tomato (Solanum lycopersicum) fruit cuticle during development are modulated by changes in the relative amounts of its components. New Phytologist, 202(3), 790-802.
34. Johnson, E. J., Dorot, O., Liu, J., Chefetz, B., & Xing, B. (2007). Spectroscopic characterization of aliphatic moieties in four plant cuticles. Communications in soil science and plant analysis, 38(17-18), 2461-2478.
35. Skolik, P., McAinsh, M. R., & Martin, F. L. (2019). ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit. Planta, 249(3), 925-939.
36. Beullens, K., Kirsanov, D., Irudayaraj, J., Rudnitskaya, A., Legin, A., Nicolaï, B. M., & Lammertyn, J. (2006). The electronic tongue and ATR–FTIR for rapid detection of sugars and acids in tomatoes. Sensors and Actuators B: Chemical, 116(1-2), 107-115.
37. Grassino, A. N., Ostojić, J., Miletić, V., Djaković, S., Bosiljkov, T., Zorić, Z., ... & Brnčić, M. (2020). Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science & Emerging Technologies, 64, 102424.
38. Rajabi, H., Jafari, S. M., Feizi, J., Ghorbani, M., & Mohajeri, S. A. (2021). Surface-decorated graphene oxide sheets with nanoparticles of chitosan-Arabic gum for the separation of bioactive compounds: A case study for adsorption of crocin from saffron extract. International Journal of Biological Macromolecules, 186, 1-12.
39. Mahmoud Nasef, M., El-Hefian, E. A., Saalah, S., & Yahaya, A. H. (2011). Preparation and properties of non-crosslinked and ionically crosslinked chitosan/agar blended hydrogel films. E-Journal of Chemistry, 8(S1), S409-S419.
40. Jurić, S., Ferrari, G., Velikov, K. P., & Donsì, F. (2019). High-pressure homogenization treatment to recover bioactive compounds from tomato peels. Journal of food engineering, 262, 170-180.
41. Wang, Y., Sun, P., Li, H., Adhikari, B. P., & Li, D. (2018). Rheological behavior of tomato fiber suspensions produced by high shear and high pressure homogenization and their application in tomato products. International journal of analytical chemistry, 2018.
42. Amirinasab sarabi S, mazaheritehrani M, Haddad khodaparast M H. The effect of whole tomato thermal pretreatment on the physicochemical properties of tomato paste produced with different degree of brix. FSCT. 2021; 18 (115) :17-22
43. XU, S. Y., Shoemaker, C. F., & Luh, B. S. (1986). Effect of break temperature on rheological properties and microstructure of tomato juices and pastes. Journal of food science, 51(2), 399-402.
44. Anthon, G. E., & Barrett, D. M. (2012). Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chemistry, 132(2), 915-920.
45. Huang, X., Yang, Y., Liu, Q., & He, W. Q. (2020). Effect of high pressure homogenization on sugar beet pulp: Physicochemical, thermal and structural properties. LWT, 134, 110177.
46. Hua, X., Xu, S., Wang, M., Chen, Y., Yang, H., & Yang, R. (2017). Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food chemistry, 232, 443-449.