[1] Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in food science & technology, 14(3), 71-78.
[2] Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148.
[3] Cazón, P., & Vázquez, M. (2020). Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environmental Chemistry Letters, 18(2), 257-267.
[4] Hou, C., Gao, L., Wang, Z., Rao, W., Du, M., & Zhang, D. (2020). Mechanical properties, thermal stability, and solubility of sheep bone collagen–chitosan films. Journal of Food Process Engineering, 43(1), e13086.
[5] Sebti, I., Chollet, E., Degraeve, P., Noel, C., & Peyrol, E. (2007). Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan. Journal of agricultural and food chemistry, 55(3), 693-699.
[6] Xu, Y., Ren, X., & Hanna, M. A. (2006). Chitosan/clay nanocomposite film preparation and characterization. Journal of applied polymer science, 99(4), 1684-1691.
[7] Boanini, E., Rubini, K., Panzavolta, S., & Bigi, A. (2010). Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomaterialia, 6(2), 383-388.
[8] Mu, C., Guo, J., Li, X., Lin, W., & Li, D. (2012). Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 27(1), 22-29.
[9] Guo, J., Ge, L., Li, X., Mu, C., & Li, D. (2014). Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids, 39, 243-250.
[10] Wang, L., Lin, L., Guo, Y., Long, J., Mu, R. J., & Pang, J. (2020). Enhanced functional properties of nanocomposite film incorporated with EGCG-loaded dialdehyde glucomannan/gelatin matrix for food packaging. Food Hydrocolloids, 108, 105863.
[11] Maroufi, L. Y., Ghorbani, M., & Tabibiazar, M. (2020). A gelatin-based film reinforced by covalent interaction with oxidized guar gum containing green tea extract as an active food packaging system. Food and Bioprocess Technology, 13(9), 1633-1644.
[12] Sionkowska, A., Michalska-Sionkowska, M., & Walczak, M. (2020). Preparation and characterization of collagen/hyaluronic acid/chitosan film crosslinked with dialdehyde starch. International journal of biological macromolecules, 149, 290-295.
[13] Ghorbani, M., Roshangar, L., & Rad, J. S. (2020). Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. European Polymer Journal, 130, 109697.
[14] Maroufi, L. Y., & Ghorbani, M. (2021). Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application. International Journal of Biological Macromolecules, 177, 485-494.
[15] Thombare, N., Jha, U., Mishra, S., & Siddiqui, M. Z. (2016). Guar gum as a promising starting material for diverse applications: A review. International journal of biological macromolecules, 88, 361-372.
[16] Jancikova, S., Jamróz, E., Kulawik, P., Tkaczewska, J., & Dordevic, D. (2019). Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials. International journal of biological macromolecules, 131, 19-28.
[17] Ye, Y., Zhu, M., Miao, K., Li, X., Li, D., & Mu, C. (2017). Development of antimicrobial gelatin-based edible films by incorporation of trans-anethole/β-cyclodextrin inclusion complex. Food and bioprocess technology, 10(10), 1844-1853.
[18] Xu, J., Xia, R., Zheng, L., Yuan, T., & Sun, R. (2019). Plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nanofiber with enhanced mechanical properties. Carbohydrate polymers, 224, 115164.
[19] Shankar, S., Teng, X., Li, G., & Rhim, J. W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264-271.
[20] Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food hydrocolloids, 44, 172-182.
[21] Deng, L., Li, X., Miao, K., Mao, X., Han, M., Li, D., ... & Ge, L. (2020). Development of disulfide bond crosslinked gelatin/ε-polylysine active edible film with antibacterial and antioxidant activities. Food and Bioprocess Technology, 13(4), 577-588.
[22] Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J. A., & Fernández-López, J. (2013). In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control, 30(2), 386-392.
[23] Mohajer, S., Rezaei, M., & Hosseini, S. F. (2017). Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydrate polymers, 157, 784-793.
[24] Tang, Y., Zhang, X., Zhao, R., Guo, D., & Zhang, J. (2018). Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydrate polymers, 197, 128-136.
[25] Li, Z., Zheng, S., Sun, H., Xi, R., Sun, Y., Luo, D., ... & Shah, B. R. (2021). Structural characterization and antibacterial properties of konjac glucomannan/soluble green tea powder blend films for food packaging. Journal of Food Science and Technology, 1-10.
[26] Ngwabebhoh, F. A., Zandraa, O., Patwa, R., Saha, N., Capáková, Z., & Saha, P. (2021). Self-crosslinked chitosan/dialdehyde xanthan gum blended hypromellose hydrogel for the controlled delivery of ampicillin, minocycline and rifampicin. International Journal of Biological Macromolecules, 167, 1468-1478.
[27] Nguyen, T. T., Dao, U. T. T., Bui, Q. P. T., Bach, G. L., Thuc, C. H., & Thuc, H. H. (2020). Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract. Progress in Organic Coatings, 140, 105487.