درون‌پوشانی اسانس بیدمشک (Salix aegyptiaca L.) با آلژینات سدیم و پروتئین آب پنیر: خصوصیات، رهایش کنترل شده و مدل‌سازی ریاضی

نویسندگان
دانشگاه زنجان، دانشکده کشاورزی، گروه علوم و مهندسی صنایع غذائی
چکیده
درون‌پوشانی اسانس بیدمشک می‌تواند از آن‌ در برابر عوامل محیطی مانند نور، اکسیژن و دما محافظت کند. در پژوهش حاضر، تهیه ریزپوشش آلژینات سدیم-پروتئین آب پنیر حاوی اسانس بیدمشک با روش امولسیونسازی- ژلاسیون داخلی با راندمان درون‌پوشانی برابر 31/87 درصد انجام شد. خصوصیات ریزپوشش‌های حاصل با استفاده از تجزیه‌و‌تحلیل اندازه ذرات، پتانسیل زتا و میکروسکوپ الکترونی روبشی مشخص گردید. راندمان درون‌پوشانی، متورم شدن و رهایش اسانس در شرایط شبیه‌ساز غذاهای چرب و اسیدی مورد بررسی قرار گرفت. در شرایط شبیه‌ساز غذاهای چرب و اسیدی، ریزپوشش دارای بار منفی با پتانسیل زتا به ترتیب 25/42 و 11/38 میلی‌ولت است. بیشترین اثر متقابل الکترواستاتیکی در نزدیکی 3=pH رخ داد که در آن بار تقریباً به خنثی نزدیک می‌شود، که نشان‌دهنده تعادل بین بارهای پلیمر است. ریزپوشش‌ها در شرایط شبیه‌ساز مواد غذایی اسیدی منقبض (3=pH) و در شرایط شبیه‌ساز مواد غذایی چرب منبسط می‌گردند (7=pH). نتایج انتشار نشان داد که آزاد شدن اسانس بیدمشک از ریزپوشش در هر دو شرایط به صورت کنترل‌شده با سرعت آهسته رخ می‌دهد. بهترین برازش بر داده‌های رهایش اسانس توسط مدل هایگسون-کروول (993/0=R2 برای شرایط شبیه‌ساز غذای اسیدی و 995/0=R2 برای شرایط شبیه‌ساز غذای چرب) انجام گردید که نشان دهنده تغییر قطر ریزپوشش به‌عنوان تابعی از زمان می‌باشد. مدل‌سازی ریاضی سینتیک رهایش نشان داد که انتشار از ریزپوشش حاوی اسانس بیدمشک از سازوکارهای انتشار فیک و فرسایش/ تخریب پیروی می‌کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Encapsulation of musk willow (Salix aegyptiaca L.) essential oil with sodium alginate and whey protein: Characterization, controlled release and mathematical modeling

نویسندگان English

Mohsen Zandi
Ali Ganjloo
Mandana Bimakr
Department Food Science and Engineering, Faculty of Agriculture, University of Zanjan
چکیده English

The musk willow essential oil is volatile and encapsulation can protect them from environmental factors such as, light, oxygen and temperature. In the present research, preparation of sodium alginate-whey protein microcapsule containing essential oil of musk willow was carried out by internal gelation-emulsification method with encapsulation efficiency of 87.31%. The obtained microcapsules were characterized by particle size analyzer, zeta potential analyzer and scanning electron microscope. Encapsulation efficiency, swelling ratio and in vitro release of the essential oil was also investigated in fatty and acidic food simulation conditions. At acidic and fatty food simulation conditions, the complex presented negatively charged, with potential zeta values being 42.25 and 38.11 mV, respectively. The greatest electrostatic interaction occurred near pH 3.0 where the charge approached neutrality, which represents a balance between the biopolymer charges. Microcapsules shrinking in the acidic food simulation (pH=3.0) and expanding in the fatty food simulation (pH=7.0). The release results indicated that the release of musk willow essential oil from the microcapsule in both conditions occurred with a controlled manner and exhibited a slow rate. The essential oil release was found to be best fitted by Hixson–Crowell model (R2=0.993 for the acidic food simulation condition and R2=0.995 for fatty food simulation condition) which implies that a change in diameter of the microcapsule as a function of time. Mathematical modeling of release kinetics shows that musk willow essential oil loaded microsphere release follows by classical Fickian diffusion and erosion/degradation mechanisms.

کلیدواژه‌ها English

microcapsule
Musk willow essential oil
Sodium alginate
control release
Kinetic models
1. Bastos LPH, Vicente J, dos Santos CHC, de Carvalho MG, Garcia-Rojas EE. Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids. 2020;102:105605.
2. Faidi A, Lassoued MA, Becheikh MEH, Touati M, Stumbé J-F, Farhat F. Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: Microspheres preparation, characterization and in vitro release study. International journal of biological macromolecules. 2019;136:386-94.
3. Hernández-Nava R, López-Malo A, Palou E, Ramírez-Corona N, Jiménez-Munguía MT. Encapsulation of oregano essential oil (Origanum vulgare) by complex coacervation between gelatin and chia mucilage and its properties after spray drying. Food Hydrocolloids. 2020;109:106077.
4. Xue F, Gu Y, Wang Y, Li C, Adhikari B. Encapsulation of essential oil in emulsion based edible films prepared by soy protein isolate-gum acacia conjugates. Food Hydrocolloids. 2019;96:178-89.
5. Zandi M, Dardmeh N, Pirsa S, Almasi H. Identification of cardamom encapsulated alginate–whey protein concentrates microcapsule release kinetics and mechanism during storage, stew process and oral consumption. Journal of Food Process Engineering. 2017;40(1):e12314.
6. Dhadde Gurunath S, Mali Hanmant S, Raut Indrayani D, Nitalikar Manoj M, Bhutkar Mangesh A. A Review on Microspheres: Types, Method of Preparation, Characterization and Application. Asian Journal of Pharmacy and Technology. 2021;11(2):2.
7. Zandi M. Vitamin protection by Alginate-Whey Protein Micro Gel (AL-WPC MG) as a novel microcapsule against gastrointestinal condition; case study: B-complex vitamins. Iranian Journal Food Science and Technology Research. 2020;16(3):37-50.
8. Zandi M, Mohebbi M, Varidi M, Ramezanian N. Evaluation of diacetyl encapsulated alginate–whey protein microspheres release kinetics and mechanism at simulated mouth conditions. Food research international. 2014;56:211-7.
9. Zandi M. Evaluation of the Kinetics of Ascorbic Acid (AA) Release from Alginate‐Whey Protein Concentrates (AL‐WPC) Microspheres at the Simulated Gastro–Intestinal Condition. Journal of Food Process Engineering. 2017;40(1):e12334.
10. Zandi M. The Mechanical, Rheological and Release Properties of Riboflavin and Biotin Encapsulated Alginate-whey Protein Micro-Gels. Research and Innovation in Food Science and Technology. 2019;8(3):285-96.
11. Volić M, Pajić-Lijaković I, Djordjević V, Knežević-Jugović Z, Pećinar I, Stevanović-Dajić Z, et al. Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydrate polymers. 2018;200:15-24.
12. Wichchukit S, Oztop M, McCarthy M, McCarthy K. Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocolloids. 2013;33(1):66-73.
13. Chen L, Subirade M. Alginate–whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials. 2006;27(26):4646-54.
14. Zandi M. Simulation of Ascorbic Acid Release from Alginate‐Whey Protein Concentrates Microspheres at the Simulated Gastrointestinal Condition Using Netlogo Platform. Journal of Food Process Engineering. 2017;40(1):e12327.
15. Asgarpanah J. Phytopharmacology and medicinal properties of Salix aegyptiaca L. African Journal of Biotechnology. 2012;11(28):7145-50.
16. Rabbani M, Vaseghi G, Sajjadi S, Amin B. Persian herbal medicines with anxiolytic properties. Journal of Medicinal Plants. 2011;3(39):7-11.
17. Sayyari Z, Farahmandfar R. Stabilization of sunflower oil with pussy willow (Salix aegyptiaca) extract and essential oil. Food science & nutrition. 2017;5(2):266-72.
18. Karimi I, Hayatgheybi H, Kamalak A, Pooyanmehr M, Marandi Y. Chemical composition and effect of an essential oil of Salix aegyptiaca L., Salicaceae,(musk willow) in hypercholesterolemic rabbit model. Revista Brasileira de Farmacognosia. 2011;21(3):407-14.
19. Crank J. The mathematics of diffusion: Oxford university press; 1979.
20. Wagner JG. Interpretation of percent dissolved-time plots derived from in vitro testing of conventional tablets and capsules. Journal of pharmaceutical sciences. 1969;58(10):1253-7.
21. Gibaldi M, Feldman S. Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and application to nondisintegrating dosage forms. Journal of pharmaceutical sciences. 1967;56(10):1238-42.
22. KOPCHA M, LORDI NG, TOJO KJ. Evaluation of release from selected thermosoftening vehicles. Journal of pharmacy and pharmacology. 1991;43(6):382-7.
23. Korsmeyer R, Peppas N. Macromolecular and modeling aspects of swelling-controlled systems. Controlled release delivery systems. 1983;1983(77-90):83.
24. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of controlled release. 1987;5(1):37-42.
25. Prata AS, Grosso CR. Influence of the oil phase on the microencapsulation by complex coacervation. Journal of the American Oil Chemists' Society. 2015;92(7):1063-72.
26. Tamjidi F, Nasirpour A, Shahedi M. Mixture design approach for evaluation of fish oil microencapsulation in gelatin-acacia gum coacervates. International Journal of Polymeric Materials and Polymeric Biomaterials. 2013;62(8):444-9.
27. Peniche C, Howland I, Carrillo O, Zaldıvar C, Argüelles-Monal W. Formation and stability of shark liver oil loaded chitosan/calcium alginate capsules. Food Hydrocolloids. 2004;18(5):865-71.
28. Bannikova A, Evteev A, Pankin K, Evdokimov I, Kasapis S. Microencapsulation of fish oil with alginate: In-vitro evaluation and controlled release. LWT. 2018;90:310-5.
29. Fioramonti SA, Stepanic EM, Tibaldo AM, Pavón YL, Santiago LG. Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins-alginate double layer emulsions. Food Research International. 2019;119:931-40.
30. Gouda R, Baishya H, Qing Z. Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J Dev Drugs. 2017;6(02):1-8.
31. D’Souza SS, Faraj JA, DeLuca PP. A model-dependent approach to correlate accelerated with real-time release from biodegradable microspheres. Aaps Pharmscitech. 2005;6(4):E553-E64.
32. Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. International journal of pharmaceutics. 2006;309(1-2):44-50.
33. Carbinatto FM, de Castro AD, Evangelista RC, Cury BS. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. asian journal of pharmaceutical sciences. 2014;9(1):27-34.
34. Arora G, Malik K, Singh I. Formulation and evaluation of mucoadhesive matrix tablets of taro gum: optimization using response surface methodology. Polimery w medycynie. 2011;41(2):23-34.
35. Al-Tahami K. Preparation of Alginate Microspheres for the Delivery of Risperidone. Yemeni Journal for Medical Sciences. 2014;8:5-.