بهینه‌سازی فرآیند استخراج لیکوپن و ترکیبات فنولی از تفاله گوجه فرنگی با استفاده از پیش‌تیمار میدان الکتریکی پالسی

نویسندگان
1 گروه علوم و صنایع غذایی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
2 2- گروه شیمی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
3 3- گروه علوم و صنایع غذایی دانشگاه آلگار، فارو، پرتقال
4 4- باشگاه پژوهشگران جوان و نخبگان، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران
چکیده
در این مطالعه به منظور بهینه‌سازی فرآیند استخراج لیکوپن و ترکیبات زیست فعال دیگر از تفاله گوجه فرنگی به کمک پیش تیمار میدان الکتریکی پالسی از شدت‌های الکتریکی مختلف (2، 4 و 6 کیلوولت بر سانتی‌متر) و تعداد پالس‌های مختلف (10، 35 و 60) استفاده گردید و میزان راندمان استخراج لیکوپن، ترکیبات فنولی کل، فعالیت رادیکال گیرندگی به روش DPPH و قدرت احیاکنندگی آهن عصاره‌های استخراجی مورد بررسی قرار گرفت. تجزیه و تحلیل آماری و بهینه‌سازی فرآیند به روش سطح پاسخ انجام شد. نتایج نشان داد که با افزایش شدت میدان الکتریکی در ابتدا میزان لیکوپن استحصالی، ترکیبات فنولی کل، فعالیت رادیکال گیرندگی به روش DPPH و میزان قدرت احیاکنندگی آهن ابتدا افزایش و سپس کاهش یافت. با افزایش تعداد پالس‌ها نیز هرچند با شیب و تاثیر کمتر ابتدا میزان لیکوپن کاهش و سپس افزایش یافت ولی میزان ترکیبات فنولی کل و فعالیت رادیکال گیرندگی به روش DPPH به صورت جزئی افزایش یافت. بهینه‌سازی فرآیند نیز نشان داد که به‌منظور رسیدن به عصاره‌ای با میزان لیکوپن و ترکیبات فنولی بیشتر، بایستی شدت میدان الکتریکی 7/3 کیلوولت بر سانتی‌متر و تعداد پالس 60 باشد، تا مطلوبیت 915/0 ایجاد گردد. در نهایت مقایسه نمونه شاهد (فاقد تیمار ) با نمونه حاصل از تیمار بهینه مشخص گرداند که نمونه حاصل از پیش‌تیمار میدان الکتریکی پالسی به ترتیب دارای 43/73 ، 28/146، 64/45 و 44/112 درصد لیکوپن، ترکیبات فنولی کل، فعالیت رادیکال گیرندگی به روش DPPH و قدرت احیاکنندگی آهن بیشتری نسبت به نمونه شاهد داشت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of pulsed electric field assisted extraction of lycopene and phenolic compounds from tomato waste

نویسندگان English

Zahra Dowlatabadi 1
Amir Hossein Elhamirad 1
Seyed Hashem Akhlaghi Feizabad 2
Vahid Farzaneh 3
Hamid Bakhshabadi 4
1 Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
2 Department of Chemistry, Sabzevar Branch, Islamic Azad University, Sabzevar,Iran.
3 FCT, University of Algarve, Faro-Portugal
4 Young Researchers and Elites Club, Gorgan Branch, Islamic Azad University, Gorgan, Iran
چکیده English

In the present study, to optimize the lycopene and phenolic compounds extraction from tomato paste, pulsed electric field in different intensities including 2, 4, 6 KW. Cm-1 and different pulse numbers including 10, 30, 60 were designed and applied. Therefore the extraction efficiency of lycopene and phenolic compounds, DPPH free radical scavenging activity as well as ferric reducing activity of the extracted oil were predicted. The statistical analysis and optimization process with the use of response surface methodology were performed. The achieved results presented that with enhancements in pulsed electric field intensity, at the beginning parameters including the efficiency of lycopene extraction and phenolic compounds extraction, DPPH free radical scavenging activity and ferric reducing power increased and then showed reductions. With enhancements in pulse number, at the beginning lycopene extraction slightly decreased then showed enhancements, but the phenolic compounds extraction rate as well as DPPH free radical scavenging activity increased slightly. The achieved results of optimization process expressed that to obtain extracts with high quantities of lycopene and phenolic compounds, pulsed electric field and pulse number should be set on 3.7 KW. Cm-1 and 6 respectively to achieve the desirability value equals to 0.915. Finally the achieved results of the comparison of control sample with the treated ones expressed that, treated sample with pulsed electric field presented higher quantities for the extracted lycopene and phenolic compounds, DPPH free radical scavenging activity as well as reducing power (111.4, 45.64, 146.28 and 73.43) compared to the standard samples.

کلیدواژه‌ها English

Tomato waste
Optimization
lycopene extraction
phenolic compounds
Pulsed electric field
1-Zargari, E. 2014. Herbal plants, Tehran University publication. Voum 5. 1010 p. (In Persian).
2- Socaciu, C. 2008. Food colorants chemical and functional properties. CRC Press Taylor and Francis Group. Boca Raton, 652p.
3- Soni, J. 2003. Separation of carotenoids from fruits and vegetables. US2003/0180435.
4- Sahlin, E., Savage, G.P. and Lister, C.E. 2004. Investigation of the antioxidant properties of tomatoes after processing. Journal of Food Composition and Analysis. 17: 635-647.
5- Ausich, R.L. and Sanders, D.J. 1997. Process for the isolation and purification of lycopene crystals. United States Patent 5858700.
6- Choudhari, S.M. and Ananthanarayan, L. 2006. Enzyme aided extraction of lycopene from tomato tissues. Food Chemistry. 102: 77-81.
7- Lavecchia, R. and Zuorro, A. 2008. Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. European Food Research and Technology. 228(1): 153-158.
8- Ottway, B. 2004. Application for the evaluation of lyco-o-mato lycopene oleoresinfrom tomato. Food standards agency, London UK.
9- Egydio, J.A., Moraes, Â.M. and Rosa, P.T.V. 2010. Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidation activity, Journal Supercrital Fluids. 54: 159–164.
10- Dolatabadi, Z., Elhami Rad, A.H., Farzaneh, V., Akhlaghi Feizabad, S.H., Estiri, S.H and Bakhshabadi, H. 2016. Modeling of the lycopene extraction from tomato pulps. Food Chemistry. 190: 968-973.
11- Barbosa-Canovas, G.V. and Zhang, Q.H. 2001. In Pulsed Electric Fields in Food Processing. Washington, DC: Technomic.
12- Asavasanti, S., Ristenpart, W., Stroeve, P. and Barrett, D.M. 2011. Permeabilization of Plant Tissue by Monopolar Pulsed Electric Field: Effect of Frequency. Journal of Food Science. 76(1): 98-111.
13- Bakhshabadi, H., Mirzaei, H.O., Ghodsvali, A., Jafari, S.M. and Ziaiifar, A.M. 2017. The influence of pulsed electric field and microwave pretreatments on some of the physicochemical properties of oil and the meal of black cumin seed. Food science and nutrition. 1–8.
14- Wiktor, A., Sledz, M., Nowacka, M., Rybak, K., Chudoba, T., Lojkowski, W. and Witrowa-Rajchert, D. 2015. The impact of pulsed electric field treatment on selected bioactive compound content and color of plant tissue. Innovative Food Science and Emerging Technologies. 30: 69–78.
15- Boussetta, N., Soichi, E., Lanoisellé, J.L. and Vorobiev, E. 2014. Valorization of oilseed residues: Extraction of polyphenols from flaxseed hulls by pulsed electric fields. Industrial Crops and Products. 52: 347–353.
16- González-Casado, S., Martín-Belloso, O., Elez-Martínez, P. and Soliva-Fortuny, R. 2018. Enhancing the carotenoid content of tomato fruit with pulsed electric field treatments: Effects on respiratory activity and quality attributes. Postharvest Biology and Technology. 137: 113–118.
17-Rostami, M., Farzaneh, V. Boujmehrani, A., Mohammadi, M. and Bakhshabadi, H. 2014. Optimizing the extraction process of sesame seeds oil using response surface method on the industrial scale. Industrial Crops and Products. 58: 160–165.
18- Shaddel, R., Maskooki, A.M., Haddad-Khodaparast, M.H., Azadmard-Damirchi, S., Mohamadi, M. and Fathi-Achachlouei, B. 2014. Optimization of extraction process of bioactive compounds from Bene hull using subcritical water. Food Science & Biotechnology. 23 (5): 1459-1468.
19- Yildirim, A., Mavi, A. and Kara, A.A. 2001. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Agricultural and Food Chemistry. 49: 4083-4089.
20- Vallverdu-Queralt, A., Odriozola-Serrano, I., Oms-Oliu, G., Lamuela-Raventós, R.M., Elez- Martínez, P. and Martín-Belloso, O., 2013a. Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food Chemistry. 141: 3131–3138.
21- Boussetta, N., Soichi, E., Lanoisellé, J.L. and Vorobiev, E. 2014. Valorization of oilseed residues: Extraction of polyphenols from flaxseed hulls by pulsed electric fields. Industrial Crops and Products. 52: 347–353.
22- Sarkis, J.R., Boussetta, N., Tessaro, I.C., Ferreira Marczak, L.D. and Vorobiev, E. 2015a. Application of pulsed electric fields and high voltage electrical discharges for oil extraction from sesame seeds. Journal of Food Engineering. 153: 20–27.
23- Grimi, N., Mamouni, F., Lebovka, N., Vorobiev, E. and Vaxelaire, J. 2010. Acoustic impulse response in apple tissues treated by pulsed electric field. Biosystems Engineering, 105(2): 266–272.
24- El Darra, N., Grimi, N., Maroun, R.G., Louka, N. and Vorobiev, E. 2013. Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation. European Food Research and Technology. 236(1): 47–56.
25- Ferreres, F., Sousa, C., Valento, P., Seabra, R. M., Pereira, J. A. and Andrade, P. B. 2007. Tronchuda cabbage (Brassica oleracea L. var. costata., DC) seed: phytochemical characterization and antioxidant potential. Journal of Food Chemistry. 101: 549-558.
26-Guderjan, M., Topfl, S., Angersbach, A. and Knorr, D. 2005. Impact of pulsed electric field treatment on the recovery and quality of plant oils. Journal of Food Engineering. 67 (3): 281–287.
27-Parniakov, O., Roselló-Soto, E., Barba, F. J., Grimi, N., Lebovka, N. and Vorobiev, E. 2015. Newapproaches for the effective valorization of papaya seeds: Extraction of proteins, phenolic compounds, carbohydrates, and isothiocyanates assisted by pulsed electric energy. Food Research International. 77 (4): 711–717.
28-Arabshahi-Delouee, S. and Urooj, A. 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry. 102: 1233-1240.
29- Kumaran, A and Karunakaran, RJ. 2007. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT - Food Science and Technology. 40: 344-352.
30- Sarkis, J.R., Boussetta, N., Blouet, C., Tessaro, I.C., Ferreira Marczak, L.D. and Vorobiev, E. 2015b. Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innovative Food Science and Emerging Technologies. 29: 170–177.