ساخت و بررسی ذرات کروی حک شده مولکولی بعنوان جاذبی با کارایی عالی برای استخراج سریع و انتخابی نیکوتین آمید توسط ستون فاز جامد از گوشت گوساله و آرد گندم

نویسندگان
1 دانشجوی دکتری علوم و صنایع غذایی، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
2 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
3 استاد بازنشسته، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
4 دانشیار، گروه غذا، تغذیه و سلامت، دانشکده سیستم های زمین و غذا، دانشگاه بریتیش کلمبیا، ونکوور، کانادا
5 دانشیار، گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
6 استادیاربازنشسته، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
ویتامین 3B (نیکوتین آمید) بعنوان پیش ساز NAD و NADP در بسیاری از واکنش های حیاتی بدن دخیل می باشد. کمبود آن موجب بیماری پلاگرا می شود، لذا مواد غذایی را با این ویتامین غنی سازی می نمایند. همچنین مقادیر زیاد آن عوارضی بهمراه دارد. بنابراین اندازه گیری ارزان، سریع، انتخابی و حساس این ویتامین در مواد غذایی ضروری می باشد. در پژوهش حاضر، روش اندازه گیری نیکوتین آمید در گوشت گوساله و آرد گندم با بکارگیری شیوه خالص سازی به کمک اسنخراج توسط ستون فاز جامد مبتنی بر جاذب پلیمرهای حک شده و تعیین مقدار با HPLC-UV پیشنهاد گردید. روش پلیمریزاسیون رسوبی برای ساخت پلیمرهای کروی حک شده با نیکوتین آمید استفاده شد. اثرات اجزا پلیمر سازی شامل منومر های عملکردی و ایجاد کننده پیوند عرضی، قالب و حلال بر ویژگیهای پیوندی بررسی شد. رفتار پیوندی پلیمر توسط معادله Freundlich بخوبی مدل سازی شد و پلیمر انتخابگری بالایی برای نیکوتین آمید در برابر نیکوتینیک اسید، نشان داد. همچنین در مطالعه سینتیک، 79 % اتصال نیکوتین آمید و 5/96 % آزاد شدن آن فورا اتفاق افتاد. پلیمر برای خالص سازی نیکوتین آمید در ستون استخراج توسط فاز جامد پر شد، نمونه های غذایی تزریق، و خروجی با HPLC-UV آنالیز گردید. رفتار خطی مناسب برای استخراج نیکوتین آمید توسط ستون فاز جامد در دامنه

μg L-1 148-5000 (R2 = 0.99) و بازیابی استخراج بالای 102-77 % و 87-81 % به ترتیب برای گوشت گوساله و آرد گندم بدست آمد. حد آشکارسازی (LOD) و حد اندازه گیری (LOQ) برای نیکوتین آمید به ترتیب μg L-1 44 و μg L-1 148 بود. انحراف استاندارد نسبی داخل-روز و بین-روز در دامنه 2/13 % الی 5/31 % برای آرد (4 =n) و 1/89 % الی 5/22 % برای گوشت (4 =n) بدست آمد که نشان دهنده صحت خوب روش برای آنالیز نمونه واقعی می باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Fabrication and Characterization of Molecularly Imprinted Microspheres as Highly Effective Sorbent for Fast and Selective Solid Phase Extraction of Nicotinamide in Beef and Wheat Flour Samples

نویسندگان English

Alireza Riazi 1
Reza Farhoosh 2
Hashem Poorazrang 3
Christine Scaman 4
Zeynab Raftani Amiri 5
Ali Sharif 6
1 Ph.D. candidate, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran.
2 Professor, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran.
3 Retired Professor, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran.
4 Associate Professor, Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia (UBC), 2205 East Mall, V6T 1Z4, Vancouver, BC, Canada
5 Associate Professor, Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran.
6 Retired assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran.
چکیده English

Vitamin B3 (Nicotinamide) is involved in many vital reactions in the human body as the precursor of NAD and NADP. NAM deficiency can lead to pellagra thus foods are fortified with this vitamin. On the other hand, high intakes of NAM can cause some symptoms. Hence, a cheap, rapid, selective and sensitive determination of NAM concentration in foods is crucial. The present study propose a NAM analysis method for beef and wheat flour by employing a molecularly imprinted polymer based solid phase extraction clean-up coupled with HPLC-UV. Precipitating polymerization technique for fabrication of NAM molecularly imprinted microspheres was utilized. The effects of polymer ingredients including functional monomer, cross-linker monomers, template and solvent were investigated on binding characteristics.The binding behaviour of the polymer well modeled through Freundlich equation and the polymer showed high selectivity of NAM over nicotinic acid (NA). In a kinetic study, 79% of NAM binding and 96.5% of NAM release occurred immediately. The NAM imprinted microspheres were packed into SPE for NAM extraction, food samples injected and the output analysed with HPLC-UV. Good linearity was obtained for solid phase extraction of NAM in the range 148–5000 μg L-1 (R2 = 0.999) and high extraction recoveries of 77–102% and 81–87% were obtained for NAM in beef and wheat flour samples, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for nicotinamide were 44 μg L-1 and 148 μg L-1, respectively. The overall inter-day and intra-day relative standard deviations of 2.13% to 5.31% for wheat flour (n=4), and 1.89% to 5.22% for beef samples were obtained, demonstrating good precision of the proposed method in its application for real sample analysis.

کلیدواژه‌ها English

Precipitation polymerization
molecularly imprinted microsphere
nicotinamide
solid phase extraction
food sample
[1] Tayade, A.B., Dhar, P., Kumar, J., Sharma, M., Chaurasia, O.P., Srivastava, R.B. (2013). Sequential determination of fat- and water-soluble vitamins in Rhodiola imbricata root from trans-Himalaya with rapid resolution liquid chromatography/tandem mass spectrometry. Anal. Chim. Acta, 789, 65–73.
[2] Asfaram, A., Ghaedi, M., Alipanahpour, E., Agarwal, S., Gupta, V.K. (2016). Application of response surface methodology and dispersive liquid–liquid microextraction by microvolume spectrophotometry method for rapid determination of curcumin in water, wastewater, and food samples. Food Anal. Methods, 9, 1274–1283.
[3] Santos, J., Mendiola, J.A., Oliveira, M.B.P.P., Ibáñez, E., Herrero, M. (2012). Sequential determination of fat- and water-soluble vitamins in green leafy vegetables during storage. J. Chromatogr. A, 1261, 179–188.
[4] Rudenko, A.O., Kartsova, L.A. (2010). Determination of water-soluble vitamin B and vitamin C in combined feed, premixes, and biologically active supplements by reversed-phase HPLC. J. Anal. Chem, 65, 71–76.
[5] Antakli, S., Sarkees, N., Sarraf, T. (2015). Determination of water-soluble vitamins B1, B2, B3, B6, B9, B12 and C on C18 column with particle size 3 lm in some manufactured food products by HPLC with UV-DAD/FID detection. Int. J. Pharm. Pharm. Sci., 7, 219–224.
[6] Zeeb, M., Ganjali, M.R., Norouzi, P. (2010). Dispersive liquid-liquid microextraction followed by spectrofluorimetry as a simple and accurate technique for determination of thiamine (vitamin B1). Microchim. Acta, 168, 317–324.
[7] Chatzimichalakis, P.F., Samanidou, V.F., Verpoorte, R., Papadoyannis, I.N. (2004). Development of a validated HPLC method for the determination of B complex vitamins in pharmaceuticals and biological fluids after solid phase extraction. J. Sep. Sci., 27, 1181–1188.
[8] Kirkland, J.B. Niacin. in: Zempleni, J., Suttie, J.W., Gregory III , J.F., Stover, P.J. (Eds.). (2014). Handbook of Vitamins. Boca Raton. CRC Press. 149-189.
[9] Eitenmiller, R.R., Ye, L., Landen Jr., W.O. (2008). Niacin. in: Vitamin analysis for the health and food sciences. Boca Raton. CRC Press. 361-400.
[10] Del Sole, R., Lazzoi, M.R., Vasapollo, G. (2010). Synthesis of nicotinamide-based molecularly imprinted microspheres and in vitro controlled release studies. Drug Deliv., 17, 130-137.
[11] R. Del Sole, A. Scardino, M.R. Lazzoi, G. Vasapollo, Molecularly imprinted polymer for solid phase extraction of nicotinamide in pork liver samples, J Appl.Polymer Sci. 120 (2011) 1634-1641.
[12] Maksimovic´, J.P., Kolar-Anic´, L.Z., Anic´, S.R., Ribicˇ, D.D., Pejic´, N.D. (2011). Quantitative determination of some water-soluble B vitamins by kinetic analytical Method based on the perturbation of an oscillatory reaction. J. Braz. Chem. Soc., 22, 38–48.
[13] Muszalska, I., Kiaszewicz, K., Kson´ , D., Sobczak, A. (2013). Determination of nicotinamide (vitamin B3) in cosmetic products using differential spectrophotometry and liquid chromatography (HPLC). J. Anal. Chem., 68, 1007–1013.
[14] Xiao, X., Hou, Y., Du, J., Sun, D., Bai, G., Luo, G. (2012). Determination of vitamins B2, B3, B6 and B7 in corn steep liquor by NIR and PLSR. Trans. Tianjin Univ., 18, 372–377.
[15] Kotkar, R. M., Srivastava, A. K. (2008). Electrochemical behavior of nicotinamide using carbon paste electrode modified with macrocyclic compounds. J. Inclusion Phenom. Macrocyclic Chem., 60, 271–279.
[16] Maiese, K., Chong, Z. Z., Hou, J., Shang, Y. C. (2009). The Vitamin Nicotinamide: Translating Nutrition into Clinical Care. Molecules, 14, 3446–3485.
[17] Hamano, T., Mitsuhashi, Y., Aoki, N., Yamamoto, S. (1988). Simultaneous determination of niacin and niacinamide in meats by high-performance liquid chromatography. J Chromatography, 457, 403-408.
[18] Bogan, K. L., Brenner, C. (2008). Nicotinic Acid, Nicotinamide, and Nicotinamide Riboside: A Molecular Evaluation of NAD+ Precursor Vitamins in Human Nutrition. Annu. Rev. Nutr, 28, 115-130.
[19] Hirayama, S. (1991). Determination of a small amount of niacin in foodstuffs by high-performance liquid chromatography. J. of Chromatography. 588, 171-175.
[20] Valls, F., Sancho, M. T., Fernandez-Muino, M. A., Checa, M. A. (2000). Simultaneous Determination of Nicotinic Acid and Nicotinamide in Cooked Sausages. J. Agric. Food Chem, 48, 3392-3395.
[21] Mohamed, A.M.I., Mohamed, H.A., Abdel-Latif, N.M., Mohamed, M.R. (2011). Spectrofluorimetric determination of some water-soluble vitamins. J. AOAC Int., 94, 1758–1769.
[22] Lefebvre, P., Agadir, A., Cornic, M., Gourmel, B., Hue, B., Dreux, C., Degos, L., Chomienne, C. (1995). Simultaneous determination of all-trans and 13-cis retinoic acids and their 4-oxo metabolites by adsorption liquid chromatography after solidphase extraction. J. Chrom. B., 666 55–61.
[23] El-Gindy, A., El-Yazby, F., Mostafa, A., Maher, M.M. (2004). HPLC and chemometric methods for the simultaneous determination of cyproheptadine hydrochloride, multivitamins, and sorbic acid. J. Pharm. Biomed. Anal., 35, 703–713.
[24] Chamkouri, N. (2014). SPE-HPLC-UV for simultaneous determination of vitamins B group concentrations in Suaeda vermiculata. Tech. J. Eng. Appl. Sci., 4, 439–443.
[25] Santos, J.R., Rangel, A.O. (2015). Development of a chromatographic low pressure flow injection system using amperometric detection: application to the analysis of niacin in coffee. Food Chem., 187, 152–158.
[26] Han, S., Wu, K. (2015). Determination of Nicotinamide in Food and Human Fluid Samples by Capillary Electrophoresis Chemiluminescence. J. of the C. Chemical Society, 62, 73-78.
[27] Delgado-Zamarreño, M.M., González-Maza, I., Sánchez-Pérez, A., Carabias-Martinez, R. (2002).
Separation and simultaneous determination of water-soluble and fat-soluble vitamins by electrokinetic capillary chromatography. J Chromatogr A., 953, 257-262.
[28] Shabangi, M., Sutton, J.A. (2005). Separation of thiamin and its phosphate esters by capillary zone electrophoresis and its application to the analysis of water-soluble vitamins. J Pharm Biomed Anal., 38, 66-71.
[29] Sallum, L. F., Soares, F. L. F., Ardila, J. A., Carneiro, R. L. (2014). Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation. Talanta, 118, 353-358.
[30] Lang, R., Yagar, E. F., Eggers, R., Hofmann, T. (2008). Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis. J. Agr. Food. Chem., 56, 11114–21.
[31] Poole, C. F. (2003). New trends in solid-phase extraction. Trends in Analytical Chemistry. 22, 362-373.
[32] Turiel, E., Marthin-Esteban, A. (2010). Molecularly imprinted polymers for sample preparation: A review. Analytica Chimica Acta. 668, 87-99.
[33] Pichon,V. (2007). Selective sample treatment using molecularly imprinted polymers. Journal of Chromatography A., 1152, 41-53.
[34] Ghaderi, M. S., Afshar, M.G., Soleimani, S. (2012). Synthesis of molecularly imprinted polymer as a sorbent for solid phase extraction of bovine albumin from whey, milk, urine and serum. Microchemical Journal. 100, 1-7.
[35] Martin-Esteban, A. (2013). Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. Trends in Analytical Chemistry. 45, 169-181.
[36] Chen, J., Bai, L., Zhang, Y., Chen, N., Zhang,Y. (2012). Fabrication of atrazine molecularly imprinted polymer microsphere by two step seed swelling polymerization method. J.Chin. Chem. Soc., 59, 1493–99.
[37] Shi,Y., Peng, D., Shi, C., Zhang, X., Xie Y., Lu, B. (2011). Selective determination of trace 17b-estradiol in dairy and meat samples by molecularly imprinted solid-phase extraction and HPLC. Food Chemistry. 126, 1916-1925.
[38] Li, K., Stover, H.D.H. (1993). Synthesis of monodisperse poly(divinylbenzenemicrospheres). Journal of Polymer Science: Part A: Polymer Chemistry. 31, 3257-3263.
[39] Ye, L., Cormack, P.A.G., Mosbach, K. (1999). Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal.Commun., 36, 35-38.
[40] Wang, J., Cormack, P.A.G., Sherrington, D.C., Khoshdel, E. (2003). Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew. Chem. Int. Ed., 42, 5336-5338.
[41] Del Sole, R., Lazzoi, M.R., Arnone, M., Sala, F.D., Cannoletta, D., Vasapollo, G. (2009). Experimental and computational studies on non-covalent imprinted microspheres as recognition system for nicotinamide molecules. Molecules. 14, 2632-2649.
[42] Ye, L., Mosbach, K. (2001). Molecularly imprinted microspheres as antibody binding mimics. React Funct.Polym., 48, 149-157.
[43] Fu, Q., Zheng, N., Li, Y.Z., Chang, W.B., Wang, Z.M. (2001). Molecularly imprinted polymers from nicotinamide and its positional isomers. J. Molec. Recog., 14, 151-156.
[44] Mookda, P., Singha, K., Weeranuch, K., Chatchai, T. (2008). Synthesis of nicotinamide imprinted polymers and their binding performances in organic and aqueous media. e-Polymers. 91, 1-9.
[45] Wu, L., Zhu, K., Zhao, M., Li,Y. (2005). Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Analytica Chemica Acta. 549, 39-44.
[46] Zhang, Z., Li, H., Liao, H., Nie, L., Yao, S. (2005). Influences of cross-linkers’ amount on the performance of the piezoelectric sensor modified with molecularly imprinted polymers. Sensors and Actuators B., 105, 176-182.
[47] Wu, D., Li, L., Zhu, Y., Li, Z., Zhu, Q. (2017). Preconcentration of Nicotinamide Using Molecularly Imprinted Microspheres for Solid-Phase Extraction with Determination by High-Performance Liquid Chromatography. Analytical letters. 50, 16.
[48] Goh, E.C.C., Stover, H.D.H. (2002). Cross-linked Poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) Microspheres and microgels prepared by precipitation polymerization: A morphology study. Macromolecules, 35, 9983-9989.
[49] Rampey, A.M., Umpleby, R.J., Rushton, G.T., Iseman, J.C., Shah, R.N., Shimizu, K.D. (2004). Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the Freundlich isotherm-affinity distribution analysis. Anal. Chem. 76, 1123-1133.
[50] Takatsuki, K., Suzuki, S., Sato, M., Sakai, K., Ushizawa, I. (1987). Liquid chromatographic determination of free and added niacin and niacinamide in beef and pork. J. Assoc. Of Anal. Chem., 70, 698-702.
[51] Mistry, R. (2012). Nicotinamide analysis using molecularly imprinted polymers. MSc. Thesis, The University of British Columbia, Vancouver, Canada.
[52] Brandrup, J., Immergut, E.H., Grulke, E.A. (1999). Polymer Handbook, 4th ed., John Wiley & Sons, Inc,.
[53] D.A. Spivak, Optimization, evaluation, and characterization of molecularly imprinted polymers, Adv. Drug Deliv. Rev. 57 (2005) 1779-1794.
[54] Valero-Navarro, A., Gomez-Romero, M., Fernandez, J.F., Cormack, P.A.G., Segura-Carretero, A., Fernandez-Gutierrez, A. (2011). Synthesis of caffeic acid molecularly imprinted polymer microspheres and HPLC evaluation of their sorption properties. Journal of Chromatography A., 1218, 7289-7296.
[55] Rushton, G.T., Karns, C.L., Shimizu, K.D. (2005). A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Analytica Chemica Acta. 528, 107-113.
[56] Li, Z., Yang, G., Liu, S., Chen, Y. (2005). Adsorption isotherms on nicotinamide-imprinted polymer stationary phase. J. Chromatogr. Sci., 43, 362-366.
[57] Abouzarzadeh, A., Forouzani, M., Jahanshahi, M., Bahramifar, N. (2012). Synthesis and evaluation of uniformly sized nalidixic acid-imprinted nanospheres based on precipitation polymerization method for analytical and biochemical applications. Journal of Molecular Recognition. 25, 404-413.
[58] da Silva, D.C., Visentainer, J.V., de Souza, N.E., Oliveira, C.C. (2013). Micellar electrokinetic chromatography method for determination of the ten watersoluble vitamins in food supplements. Food Anal. Methods. 6, 1592–1606.
[59] Ekinci, R., Kadakal, Ç. (2005). Determination of seven water-soluble vitamins in Tarhana, traditional Turkish cereal food, by high performance liquid chromatography. Acta Chromatogr. 15, 289–297.
[60] Amidzˇic´, R., Brboric, J., Cˇudina, O., Vladimirov, S. (2005). RP-HPLC determination of vitamins B1, B3, B6, folic acid and B12 in multivitamin tablets. J. Serb. Chem. Soc., 70, 1229–1235.
[61] Ciulu, M., Solinas, S., Floris, I., Panzanelli, A., Pilo, M.I., Piu, P.C., Spano, N., Sanna, G. (2011). RP-HPLC determination of water-soluble vitamins in honey. Talanta, 83, 924–929.