[1] Tayade, A.B., Dhar, P., Kumar, J., Sharma, M., Chaurasia, O.P., Srivastava, R.B. (2013). Sequential determination of fat- and water-soluble vitamins in Rhodiola imbricata root from trans-Himalaya with rapid resolution liquid chromatography/tandem mass spectrometry. Anal. Chim. Acta, 789, 65–73.
[2] Asfaram, A., Ghaedi, M., Alipanahpour, E., Agarwal, S., Gupta, V.K. (2016). Application of response surface methodology and dispersive liquid–liquid microextraction by microvolume spectrophotometry method for rapid determination of curcumin in water, wastewater, and food samples. Food Anal. Methods, 9, 1274–1283.
[3] Santos, J., Mendiola, J.A., Oliveira, M.B.P.P., Ibáñez, E., Herrero, M. (2012). Sequential determination of fat- and water-soluble vitamins in green leafy vegetables during storage. J. Chromatogr. A, 1261, 179–188.
[4] Rudenko, A.O., Kartsova, L.A. (2010). Determination of water-soluble vitamin B and vitamin C in combined feed, premixes, and biologically active supplements by reversed-phase HPLC. J. Anal. Chem, 65, 71–76.
[5] Antakli, S., Sarkees, N., Sarraf, T. (2015). Determination of water-soluble vitamins B1, B2, B3, B6, B9, B12 and C on C18 column with particle size 3 lm in some manufactured food products by HPLC with UV-DAD/FID detection. Int. J. Pharm. Pharm. Sci., 7, 219–224.
[6] Zeeb, M., Ganjali, M.R., Norouzi, P. (2010). Dispersive liquid-liquid microextraction followed by spectrofluorimetry as a simple and accurate technique for determination of thiamine (vitamin B1). Microchim. Acta, 168, 317–324.
[7] Chatzimichalakis, P.F., Samanidou, V.F., Verpoorte, R., Papadoyannis, I.N. (2004). Development of a validated HPLC method for the determination of B complex vitamins in pharmaceuticals and biological fluids after solid phase extraction. J. Sep. Sci., 27, 1181–1188.
[8] Kirkland, J.B. Niacin. in: Zempleni, J., Suttie, J.W., Gregory III , J.F., Stover, P.J. (Eds.). (2014). Handbook of Vitamins. Boca Raton. CRC Press. 149-189.
[9] Eitenmiller, R.R., Ye, L., Landen Jr., W.O. (2008). Niacin. in: Vitamin analysis for the health and food sciences. Boca Raton. CRC Press. 361-400.
[10] Del Sole, R., Lazzoi, M.R., Vasapollo, G. (2010). Synthesis of nicotinamide-based molecularly imprinted microspheres and in vitro controlled release studies. Drug Deliv., 17, 130-137.
[11] R. Del Sole, A. Scardino, M.R. Lazzoi, G. Vasapollo, Molecularly imprinted polymer for solid phase extraction of nicotinamide in pork liver samples, J Appl.Polymer Sci. 120 (2011) 1634-1641.
[12] Maksimovic´, J.P., Kolar-Anic´, L.Z., Anic´, S.R., Ribicˇ, D.D., Pejic´, N.D. (2011). Quantitative determination of some water-soluble B vitamins by kinetic analytical Method based on the perturbation of an oscillatory reaction. J. Braz. Chem. Soc., 22, 38–48.
[13] Muszalska, I., Kiaszewicz, K., Kson´ , D., Sobczak, A. (2013). Determination of nicotinamide (vitamin B3) in cosmetic products using differential spectrophotometry and liquid chromatography (HPLC). J. Anal. Chem., 68, 1007–1013.
[14] Xiao, X., Hou, Y., Du, J., Sun, D., Bai, G., Luo, G. (2012). Determination of vitamins B2, B3, B6 and B7 in corn steep liquor by NIR and PLSR. Trans. Tianjin Univ., 18, 372–377.
[15] Kotkar, R. M., Srivastava, A. K. (2008). Electrochemical behavior of nicotinamide using carbon paste electrode modified with macrocyclic compounds. J. Inclusion Phenom. Macrocyclic Chem., 60, 271–279.
[16] Maiese, K., Chong, Z. Z., Hou, J., Shang, Y. C. (2009). The Vitamin Nicotinamide: Translating Nutrition into Clinical Care. Molecules, 14, 3446–3485.
[17] Hamano, T., Mitsuhashi, Y., Aoki, N., Yamamoto, S. (1988). Simultaneous determination of niacin and niacinamide in meats by high-performance liquid chromatography. J Chromatography, 457, 403-408.
[18] Bogan, K. L., Brenner, C. (2008). Nicotinic Acid, Nicotinamide, and Nicotinamide Riboside: A Molecular Evaluation of NAD+ Precursor Vitamins in Human Nutrition. Annu. Rev. Nutr, 28, 115-130.
[19] Hirayama, S. (1991). Determination of a small amount of niacin in foodstuffs by high-performance liquid chromatography. J. of Chromatography. 588, 171-175.
[20] Valls, F., Sancho, M. T., Fernandez-Muino, M. A., Checa, M. A. (2000). Simultaneous Determination of Nicotinic Acid and Nicotinamide in Cooked Sausages. J. Agric. Food Chem, 48, 3392-3395.
[21] Mohamed, A.M.I., Mohamed, H.A., Abdel-Latif, N.M., Mohamed, M.R. (2011). Spectrofluorimetric determination of some water-soluble vitamins. J. AOAC Int., 94, 1758–1769.
[22] Lefebvre, P., Agadir, A., Cornic, M., Gourmel, B., Hue, B., Dreux, C., Degos, L., Chomienne, C. (1995). Simultaneous determination of all-trans and 13-cis retinoic acids and their 4-oxo metabolites by adsorption liquid chromatography after solidphase extraction. J. Chrom. B., 666 55–61.
[23] El-Gindy, A., El-Yazby, F., Mostafa, A., Maher, M.M. (2004). HPLC and chemometric methods for the simultaneous determination of cyproheptadine hydrochloride, multivitamins, and sorbic acid. J. Pharm. Biomed. Anal., 35, 703–713.
[24] Chamkouri, N. (2014). SPE-HPLC-UV for simultaneous determination of vitamins B group concentrations in Suaeda vermiculata. Tech. J. Eng. Appl. Sci., 4, 439–443.
[25] Santos, J.R., Rangel, A.O. (2015). Development of a chromatographic low pressure flow injection system using amperometric detection: application to the analysis of niacin in coffee. Food Chem., 187, 152–158.
[26] Han, S., Wu, K. (2015). Determination of Nicotinamide in Food and Human Fluid Samples by Capillary Electrophoresis Chemiluminescence. J. of the C. Chemical Society, 62, 73-78.
[27] Delgado-Zamarreño, M.M., González-Maza, I., Sánchez-Pérez, A., Carabias-Martinez, R. (2002).
Separation and simultaneous determination of water-soluble and fat-soluble vitamins by electrokinetic capillary chromatography. J Chromatogr A., 953, 257-262.
[28] Shabangi, M., Sutton, J.A. (2005). Separation of thiamin and its phosphate esters by capillary zone electrophoresis and its application to the analysis of water-soluble vitamins. J Pharm Biomed Anal., 38, 66-71.
[29] Sallum, L. F., Soares, F. L. F., Ardila, J. A., Carneiro, R. L. (2014). Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation. Talanta, 118, 353-358.
[30] Lang, R., Yagar, E. F., Eggers, R., Hofmann, T. (2008). Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis. J. Agr. Food. Chem., 56, 11114–21.
[31] Poole, C. F. (2003). New trends in solid-phase extraction. Trends in Analytical Chemistry. 22, 362-373.
[32] Turiel, E., Marthin-Esteban, A. (2010). Molecularly imprinted polymers for sample preparation: A review. Analytica Chimica Acta. 668, 87-99.
[33] Pichon,V. (2007). Selective sample treatment using molecularly imprinted polymers. Journal of Chromatography A., 1152, 41-53.
[34] Ghaderi, M. S., Afshar, M.G., Soleimani, S. (2012). Synthesis of molecularly imprinted polymer as a sorbent for solid phase extraction of bovine albumin from whey, milk, urine and serum. Microchemical Journal. 100, 1-7.
[35] Martin-Esteban, A. (2013). Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. Trends in Analytical Chemistry. 45, 169-181.
[36] Chen, J., Bai, L., Zhang, Y., Chen, N., Zhang,Y. (2012). Fabrication of atrazine molecularly imprinted polymer microsphere by two step seed swelling polymerization method. J.Chin. Chem. Soc., 59, 1493–99.
[37] Shi,Y., Peng, D., Shi, C., Zhang, X., Xie Y., Lu, B. (2011). Selective determination of trace 17b-estradiol in dairy and meat samples by molecularly imprinted solid-phase extraction and HPLC. Food Chemistry. 126, 1916-1925.
[38] Li, K., Stover, H.D.H. (1993). Synthesis of monodisperse poly(divinylbenzenemicrospheres). Journal of Polymer Science: Part A: Polymer Chemistry. 31, 3257-3263.
[39] Ye, L., Cormack, P.A.G., Mosbach, K. (1999). Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal.Commun., 36, 35-38.
[40] Wang, J., Cormack, P.A.G., Sherrington, D.C., Khoshdel, E. (2003). Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew. Chem. Int. Ed., 42, 5336-5338.
[41] Del Sole, R., Lazzoi, M.R., Arnone, M., Sala, F.D., Cannoletta, D., Vasapollo, G. (2009). Experimental and computational studies on non-covalent imprinted microspheres as recognition system for nicotinamide molecules. Molecules. 14, 2632-2649.
[42] Ye, L., Mosbach, K. (2001). Molecularly imprinted microspheres as antibody binding mimics. React Funct.Polym., 48, 149-157.
[43] Fu, Q., Zheng, N., Li, Y.Z., Chang, W.B., Wang, Z.M. (2001). Molecularly imprinted polymers from nicotinamide and its positional isomers. J. Molec. Recog., 14, 151-156.
[44] Mookda, P., Singha, K., Weeranuch, K., Chatchai, T. (2008). Synthesis of nicotinamide imprinted polymers and their binding performances in organic and aqueous media. e-Polymers. 91, 1-9.
[45] Wu, L., Zhu, K., Zhao, M., Li,Y. (2005). Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Analytica Chemica Acta. 549, 39-44.
[46] Zhang, Z., Li, H., Liao, H., Nie, L., Yao, S. (2005). Influences of cross-linkers’ amount on the performance of the piezoelectric sensor modified with molecularly imprinted polymers. Sensors and Actuators B., 105, 176-182.
[47] Wu, D., Li, L., Zhu, Y., Li, Z., Zhu, Q. (2017). Preconcentration of Nicotinamide Using Molecularly Imprinted Microspheres for Solid-Phase Extraction with Determination by High-Performance Liquid Chromatography. Analytical letters. 50, 16.
[48] Goh, E.C.C., Stover, H.D.H. (2002). Cross-linked Poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) Microspheres and microgels prepared by precipitation polymerization: A morphology study. Macromolecules, 35, 9983-9989.
[49] Rampey, A.M., Umpleby, R.J., Rushton, G.T., Iseman, J.C., Shah, R.N., Shimizu, K.D. (2004). Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the Freundlich isotherm-affinity distribution analysis. Anal. Chem. 76, 1123-1133.
[50] Takatsuki, K., Suzuki, S., Sato, M., Sakai, K., Ushizawa, I. (1987). Liquid chromatographic determination of free and added niacin and niacinamide in beef and pork. J. Assoc. Of Anal. Chem., 70, 698-702.
[51] Mistry, R. (2012). Nicotinamide analysis using molecularly imprinted polymers. MSc. Thesis, The University of British Columbia, Vancouver, Canada.
[52] Brandrup, J., Immergut, E.H., Grulke, E.A. (1999). Polymer Handbook, 4th ed., John Wiley & Sons, Inc,.
[53] D.A. Spivak, Optimization, evaluation, and characterization of molecularly imprinted polymers, Adv. Drug Deliv. Rev. 57 (2005) 1779-1794.
[54] Valero-Navarro, A., Gomez-Romero, M., Fernandez, J.F., Cormack, P.A.G., Segura-Carretero, A., Fernandez-Gutierrez, A. (2011). Synthesis of caffeic acid molecularly imprinted polymer microspheres and HPLC evaluation of their sorption properties. Journal of Chromatography A., 1218, 7289-7296.
[55] Rushton, G.T., Karns, C.L., Shimizu, K.D. (2005). A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Analytica Chemica Acta. 528, 107-113.
[56] Li, Z., Yang, G., Liu, S., Chen, Y. (2005). Adsorption isotherms on nicotinamide-imprinted polymer stationary phase. J. Chromatogr. Sci., 43, 362-366.
[57] Abouzarzadeh, A., Forouzani, M., Jahanshahi, M., Bahramifar, N. (2012). Synthesis and evaluation of uniformly sized nalidixic acid-imprinted nanospheres based on precipitation polymerization method for analytical and biochemical applications. Journal of Molecular Recognition. 25, 404-413.
[58] da Silva, D.C., Visentainer, J.V., de Souza, N.E., Oliveira, C.C. (2013). Micellar electrokinetic chromatography method for determination of the ten watersoluble vitamins in food supplements. Food Anal. Methods. 6, 1592–1606.
[59] Ekinci, R., Kadakal, Ç. (2005). Determination of seven water-soluble vitamins in Tarhana, traditional Turkish cereal food, by high performance liquid chromatography. Acta Chromatogr. 15, 289–297.
[60] Amidzˇic´, R., Brboric, J., Cˇudina, O., Vladimirov, S. (2005). RP-HPLC determination of vitamins B1, B3, B6, folic acid and B12 in multivitamin tablets. J. Serb. Chem. Soc., 70, 1229–1235.
[61] Ciulu, M., Solinas, S., Floris, I., Panzanelli, A., Pilo, M.I., Piu, P.C., Spano, N., Sanna, G. (2011). RP-HPLC determination of water-soluble vitamins in honey. Talanta, 83, 924–929.