ریزپوشانی اسانس کاکوتی با استفاده از مالتودکسترین و صمغ عربی به روش خشک کردن پاششی

نویسندگان
1 دانشجوی دکترای تخصصی، گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 دانشیار گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
3 استادیار مرکز رشد فناوری سلامت ابن سینا، پژوهشگاه ابن سینا، جهاد دانشگاهی، تهران، ایران.
چکیده
انکپسولاسیون یا ریزپوشانی، یکی از روش های مهم برای محافظت اسانس ها در برابر تبخیر، تخریب و حفظ ویژگی های ضد میکروبی در کاهش جمعیت میکروارگانیسم ها در مواد غذایی است. آنالیز GC/MS اسانس کاکوتی نشان داد که بیشترین ترکیبات به ترتیب پولگون (33/10 %)، کارواکرول (10/60 %)، پیپریتنون (9/33 %)، اکالیپتول (8/01 %)، γ-ترپینئول (5/46 %)، ال-منتون (4/79 %) بود. ریزپوشانی اسانس کاکوتی با استفاده از مالتودکسترین و صمغ عربی به نسبت 1:1 با غلظت های مختلف 10 % ، 20 % و 30 % (وزنی/ وزنی) و اسانس با غلظت 2/5 درصد (وزنی/ وزنی) به روش خشک کردن پاششی انجام شد. ویژگی های امولسیون 3/8 =pH، اندازه ذرات 429 nm، شاخص بس پاشیدگی (PDI) 0/681 و پتانسیل زتای 25/8- (mV) بود. بهترین شرایط عملیاتی برای ریزپوشانی اسانس کاکوتی، انتخاب غلظت 30 % (وزنی /وزنی) دیواره با نسبت 1:1 و غلظت 2/5 % (وزنی/ وزنی) اسانس به دست آمد. میکروکپسول تولید شده با 4/7 =pH ، میزان رطوبت 0/9%، اندازه ذرات کم تر از 20 µm، درصد اسانس تام 4/655 %، درصد اسانس سطحی (بسیار ناچیز) 0/018 %، درصد اسانس کپسول شده 60 %، راندمان ریزپوشانی(بالا) 96/65 %، پتانسیل زتای 22/7- (mV)، شاخص بس پاشیدگی 0/375 = PDI، با خاصیت حلالیت در آب و رنگ زرد کم رنگ و بدون هیچ گونه رسوبی به دست آمد. نتایج نشان داد که روش خشک کردن پاششی یک روش مناسب برای ریزپوشانی اسانس کاکوتی است. اسانس کاکوتی در آب نامحلول است ولی با این روش می توان یک میکروکپسول محلول در آب تولید کرد که باتوجه به خاصیت آنتی اکسیدانی و آنتی میکروبیالی اسانس کاکوتی، می توان از آن به عنوان یک نگه دارنده طبیعی و موثر در کاهش باکتری های پاتوژن و افزایش زمان ماندگاری مواد غذایی استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Encapsulation of Essential Oil of Ziziphora clinopodioides Using Maltodextrin and Gum Arabic by Spray Drying Method

نویسندگان English

Abbas Baygan 1
Shila Safaeian 2
Reza Shahinfar 3
Zhaleh Khoshkhoo 2
1 Department of Food Science and Technology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Food Science and Technology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
3 Avicenna Health Incubator Center, Avicenna Research Institute, Tehran, Iran.
چکیده English

Encapsulation is one of the most important methods to protect essential oils from evaporation, degradation, and preservation of antimicrobial properties for reducing the number of microorganisms in food. Based on GC/MS analysis, Pulegone (33.10 %), Carvacrol (10.60 %), Piperitenone (9.33 %), Eucalyptol (8.01 %), γ-Terpineol (5.46 %), L- Menthone (4.79 %) were as the major components of phytochemicals of Ziziphoria clinopodioides essential oil (ZEO). Encapsulation of ZEO using maltodextrin and gum arabic in a ratio of 1:1 with different concentrations of 10 %, 20 % and 30 % (w/w) wall, and concentration of 2.5 % (w/w) ZEO by spray drying method was done. Emulsion characteristics were pH = 3.8, particle size = 429 nm, polydispersity index PDI=0.681 and zeta potential = -25.8 mV. The results showed that the best operating conditions for encapsulation of ZEO using maltodextrin and gum arabic by spray drying method, is selection of concentration of 30 % (w/w) wall with ratio of 1:1 and concentration of 2.5 % (w/w) ZEO. The final microcapsul with pH = 4.7, moisture of = 0.9 %, particle size <20 µm, total oil content 4.655 %, surface oil 0.018 %, oil retention 60 %, encapsulation efficiency 96.65 %, zeta potential = -22.7 mV, polydispersity index (PDI) = 0.375 and water-soluble property with light yellow color and without sediment was produced. Spray drying method is a suitable method for encapsulation of ZEO. ZEO is insoluble in water, but a water-soluble microcapsule can be produced with using this method. Due to the antioxidant and antimicrobial properties of zeo, it can be used as a natural and effective preservative in reducing pathogenic bacteria and increasing the shelf life of food.

کلیدواژه‌ها English

Encapsulation
Ziziphora clinopodioides essential oil (ZEO)
Maltodextrin
Gum arabic
Spray drying
natural preservative
[1] Seow,Y. X., Yeo, C.R., Chung, H.L., Yuk, H.G. (2014). Plant essential oils as active antimicrobial agents, Critical Reviews in Food Science and Nutrition, 54,(5): 625-644.https://doi.org/10.1080/10408398.2011.599504.
[2] Shahbazi, Y. (2016). Effects of Ziziphora clinopodioides Essential Oil and Nisin on the Microbiological Properties of Milk, Pharmaceutical Sciences, 22(4): 272-278. https://doi.org/10.15171/PS.2016.42.
[3] Mazhar, S.F., Aliakbari, F., Karami-Osboo, R., Morshedi, D., Shariati, P., Farajzadeh, D. (2014). Inhibitory Effects of Several Essential Oils towards Salmonella Typhimurium, Salmonella paratyphi A and Salmonella paratyphi B, Applied Food Biotechnology, 1(1): 45-54. https://doi.org/10.22037/afb.v1i1.7134.
[4] Ojagh, S. M., Rezaei, M., Razavi, S. H., Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamonoil on the quality of refrigerated rainbow trout, Food Chemistry, 120 (1): 193-198. https://doi.org/10.1016/j.foodchem.2009.10.006.
[5] Wiwanitkit, V., Ebrahimi Khoosfi, M. (2015). Safety Aspects of Local Tropical Food Production: Essential Oil Incorporation as a Safe Approach, Applied Food Biotechnology, 2(2): 3-6 https://doi.org/10.22037/afb.v2i2.7664.
[6] Sonboli, A., Atri, M., Shafiei, S. (2010). Intraspecific Variability of the Essential Oil of Ziziphora clinopodioides ssp. rigida from Iran, Chemistry & Biodiversity, 7(7): 1784-1789. https://doi.org/10.1002/cbdv.200900336.
[7] Zargari, A. (1995). “Medicinal Plants", Publishing Tehran University, 5(4).
[8] Shahinfar, R., Khanzadi, S., Hashemi, M., Azizzadeh, M., Boston, A. (2017). The Effect of Ziziphora clinopodioides Essential Oil and Nisin on Chemical and Microbial Characteristics of Fish Burger During Refrigerated Storage, Iran. J. Chem. Chem. Eng., 36(5): 65-75. doi:10.30492/IJCCE.2017.24338
[9] Sardashti, A. R., Valizadeh J., Aldhami, Y. (2012). Chemical composition of the essential eil from Ziziphora clinopodioids Lam, from Iran by means of gas chromatography-mass spectrometry (GC-MS), Journal of Horticulture and Forestry, 4(10): 169-171.
[10] Hosseinzadeh, S., Haddad Khodaparast, M. H., Bostan, A., Mohebbi, M. (2016). Microencapsulation of Spearmint (MenthaSpicata) Oil using spray drying Method, Iranian Food Science and Technology Research Journal, 12(4): 499-511.
[11] Hosseinzadeh, S., Haddad Khodaparast, M. H., Bostan, A., Mohebbi, M. (2017). Microencapsulation of Spearmint (Mentha Spicata) Oil By Modified Starch, Iranian Food Science and Technology Research Journal, 12(5): 639-651.
[12] Baygan, A., Shahinfar, R. (2021). Encapsulation and Technology of Microcapsules in Food Industry, 27th National Iranian Food Science and Technology Congress, Ahwaz, IRAN, 3-4 Feb.

[13] Agnihotri, N., Ravinesh, M., Chirag, G., Manu, A. (2012). Microencapsulation – A Novel Approach in Drug Delivery: A Review, Indo Global Journal of Pharmaceutical Sciences, 2(1): 1-20.
[14] Taylor, A. (1983). Encapsulation systems and their applications in the flavor industry, Food Flavor Ingredients Packaging and processing, 5(9): 48.

[15] Desai, K. G. H., Park, H. J. (2005). Recent Developments in Microencapsulation of Food Ingredients, Drying Technology, 23(7): 1361-1394. https://doi.org/10.1081/DRT-200063478.
[16] Adamiec, J., Kalemba, D. (2004). Microencapsulation of peppermint oil during spray drying, International Drying Symposium, B(4): 1510.
[17] Toure, A., Bo Lu, H., Zhang, X., Xueming, X. (2011). Microencapsulation of Ginger Oil in 18DE Maltidextrin/Whey Protein Isolate, China Journal of Herbs, Spices & Medicinal Plants, 17(2): 183-195. https://doi.org/10.1080/10496475.2011.583137.
[18] Frascareli, E. C., Silvaa, V. M., Tonon, R. V., Hubingera, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spry drying, Food and Bioproducts Pprocessing, 90(3): 413-424.
[19] Shahinfar, R. (2018). The Effect of Ziziphora clinopodioides essential oil Nisin (microencapsulated and non microencapsulated) and their Combination on Shelf Life Extension of Fish Burger, PhD Thesis, Ferdowsi University of Mashhad, Mashhad, IRAN.
[20] Najaf Najafi, M., Kadkhodaee, R., (2011). Microencapsulation of Limonene by Freeze Drying: Effect of Type and Concentration of Wall Material, Iranian Food Science and Technology Research Journal, 7(3): 210-217.
[21] Bayramoglu, B., Sahin, S., Sumnu, G. (2008). Solvent-free microwave extraction of essential oil from oregano, J. Food Eng., 88(4): 535-540.
[22] Gavahian, M., Farahnaky, A., Javidnia, K., Majzoobi, M. (2012). Comparison of Ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L., Innov. Food Sci. Emerg. Technol., 14: 85-91.
[23] Batooli, H., Akhbari, M., Hoseinizadeh, S. M. J. (2012). The effect of different methods of essential oil extraction on the quantity and quality of essential oil of two species of the Ziziphora) Ziziphora L.(, Journal of Herbal Drugs, 3(3): 135-146.
[24] Shafeqat, A. (2012). “Chemistry of Essential Oils and Aromatherapy”, Publisher: Negin Sabalan, 1: 30-33.
[25] Rennie, K. L., Hughes, J., Lang, R., Jebb, S. A. (2003). Nutritional management of rheumatoid arthritis: a review of the evidence, Journal of Human Nutrition and Dietetics, 16(2): 97-109. https://doi.org/10.1046/j.1365-277x.2003.00423.x.
[26] Badee, A. Z. M., Amal, E., El-Kader, A., Hanan, M. A. (2012). Microencapsulation of Peppermint Oil by Spray Drying, Australian Journal of Basic and Applied Sciences, 6(12): 499-504.
[27] Sadeghian, A. (2013). Investigation of the effect of intermolecular interactions on emulsion and microcapsule properties of cardamom oil, PhD Thesis, Ferdowsi University of Mashhad, Mashhad, IRAN.
[28] Baranauskiene, R., Bylaite, E., Zukauskaite, J., Venskutonis, R. P. (2007). Flavor Retention of Peppermint (Mentha piperita L.) Essential Oil Spray-Dried in Modified Starches during Encapsulation and Storage, Journal of Agricultural and Food Chemistry, 55(8): 3027-3036. https://doi.org/10.1021/jf062508c.
[29] McNamee, B. F., White, L. E., O'Riordan, E. D., O'Sullivan, M. (2001). Effect of partial replacement of gum arabic with carbohydrates on its microencapsulation properties, J. Agr. Food Chem., 49(7): 3385-3388. https:// doi.org/10.1021/jf001003y.
[30] Ghahramanifar, A., Mohammadi Sani, A., Najaf Najafi, M., Ghahramanifar, M. (2010). The effect of emulsion properties on the properties of powders obtained from the microcoating process, Journal of Food Science and Technology, 2(2): 45-54.
[31] Jafari, S. M., He, Y., Bhandari, B. (2007). Encapsulation of Nanoparticles of d-Limonene by Spray Drying: Role of Emulsifiers and Emulsifying Techniques, Drying Technology, 25(6): 1069-1079. https://doi.org/10.1080/07373930701396758.
[32] Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M., Linko, P. (2003). Microencapsulation by Spray Drying: Influence of Emulsion Size on the Retention of Volatile Compounds, Journal of Food Science, 68(7): 2256-2262. https://doi.org/10.1111/j.1365-2621.2003.tb05756.x.
[33] Soottitantawat, A., Bigeard, F., Yoshii, H., Furuta, T., Ohkawara, M., P. Linko, P. (2005). Influence of emulsion and powder size on the stability of encapsulated d-limonene by spray drying, Innovative Food Science and Emerging Technologies, 6(1): 107-114. https://doi.org/10.1016/J.IFSET.2004.09.003.
[34] Jafari, S. M., Assadooor, E., He, Y., Bhandari, B. (2008). Encapsulation Efficiency of Food Flavours and Oils during Spray Drying, Drying Technology, 26(7): 816-835. https://doi.org/10.1080/07373930802135972.
[35] Ahn, J. H., Kim, Y. P., Lee, Y. M., Seo, E. M., Lee, K. W., H.S. Kim, H. S. (2008). Optimization of microencapsulation of seed oil by response surface methodology, Food Chemistry, 107(1): 98-105.

[36] Barbosa, M. I. M. J., Borcarelii, C. D., Mercadante, A. Z. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations, Food Research International, 38(8-9): 989-994. https://doi.org/10.1016/j.foodres.2005.02.018.
[37] Ferguson, L.J. C., Lebetkin, E. H., Lih, F. B., Tomer, K. B., Parkinson, H. D., Borghoff, S. J., Burka, L. T. (2007). 14C-labeled Pulegone and Metabolites Binding to α2u-globulin in Kidneys of Male F-344 Rats, Journal of Toxicology and Enviromental Health, 70(17): 1416-1423. https://doi.org/10.1080/15287390701382720.
[38] Fernandes, L. P., Turatti, I. C., Lopes, N. P., Ferreira, J. C., Candido, R. C., Oliveira, W. P., (2008). Volatile Retention and Antifungal Properties of Spray-Dried Microparticles of Lippia sidoides Essential Oil, Drying Technology, 26(12):1534-1542. https://doi.org/10.1080/07373930802464034.
[39] Hogan, S. A., McNamee, B. F., O'Riordan, D., O’Sullivan, M., (2001). Emulsification and microencapsulation property of sodium caseinate/carbohydrate blends, International Dairy Journal, 11(3):137-144. https://doi.org/10.1016/S0958-6946(01)00091-7.
[40] Bhandari, B. R., Dumoulin, E. D., Richard, H.M.J., Noleau, I., Lebert, A. M., (1992). Flavor Encapsulation by Spray Drying: Application to Citral and Linalyl Acetate, Journal of Food Science, 57(1): 217-221. https://doi.org/10.1111/j.1365-2621.1992.tb05459.x
[41] AOAC (1997). Official Methods of Analysis, 16th ed. 3rd rev. Association of Official Analytical.
[42] Webb. P. A., (2001). Volume and Density Determinations for Particle Technologists, Micromeritics Instrument Corp., 2,16: 1-16.