استخراج اسانس بیدمشک (Salix aegyptiaca L.) با روش تقطیر مقاومتی و مدل‌سازی سینتیک استخراج با شبکه عصبی مصنوعی

نویسندگان
دانشگاه زنجان، دانشکده کشاورزی، گروه علوم و مهندسی صنایع غذائی
چکیده
در این پژوهش، تاثیر متغیرهای مختلف فرایند تقطیر مقاومتی شامل گرادیان ولتاژ (5، 15 و 25 ولت بر سانتی‌متر)، زمان استخراج (30، 75 و 120 دقیقه) و غلظت نمک کلرید سدیم (5/0، 1 و 5/1 درصد) بر عملکرد استخراج، مصرف انرژی و محتوای فنول کل اسانس بیدمشک مورد بررسی قرار گرفت و با روش تقطیر آبی مقایسه شد. در نهایت از مدل‌سازی شبکه عصبی مصنوعی برای پیش‌بینی سینتیک استخراج اسانس استفاده شد. نتایج نشان داد که بازده استخراج، مصرف انرژی و محتوای فنول کل به‌طور معنی‌داری تحت تاثیر متغیرهای زمان استخراج و گرادیان ولتاژ می‌باشد (05/0>p). بازده اسانس به‌دست آمده توسط روش‌های تقطیر مقاومتی و تقطیر آبی به‌ترتیب برابر 012/0±119/0 و 01/0±081/0 بود. بین وزن مخصوص، ضریب شکست و محتوای فنول کل اسانس حاصل از روش‌های تقطیر مقاومتی و تقطیر آبی تفاوت معنی‌داری وجود نداشت (05/0˃p)، با این‌حال IC50 اسانس استخراج شده توسط روش تقطیر مقاومتی به‌طور معنی‌داری (05/0>p) بالاتر از اسانس بدست آمده با روش تقطیر آبی بود. در طراحی مدل شبکه عصبی مصنوعی گرادیان ولتاژ، زمان استخراج و غلظت نمک به عنوان ورودی در نظر گرفته شد و بازده استخراج اسانس به‌عنوان خروجی مدل پیش‌بینی گردید. نتایج نشان داد که بهترین عملکرد پیش‌بینی مربوط به پیکربندی 3-9-8-1 بود (036/0RMSE= و 99/0R2=). بنابراین، می‌توان نتیجه گرفت که روش تقطیر مقاومتی برای استخراج اسانس قابل استفاده است و مدل شبکه عصبی مصنوعی یک ابزار کمی کارآمد در پیش‌بینی سینتیک استخراج اسانس است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Ohmic assisted hydrodistillation extraction of musk willow (Salix aegyptiaca L.) essential oil and artificial neural network modeling of extraction kinetic

نویسندگان English

Mohsen Zandi
Ali Ganjloo
Mandana Bimakr
Department Food Science and Engineering, Faculty of Agriculture, University of Zanjan
چکیده English

In the current research, the effects of different ohmic assisted hydrodistillation (OAHD) parameters including voltages gradient (5, 15 and 25 v/cm), extraction time (30, 75 and 120 min) and NaCl concentrations (0.5, 1 and 1.5%) on the extraction yield, energy consumption and total phenol content (TPC) of Salix aegyptiaca L.essential oil were investigated, and then compared with conventional hydrodistillation (HD). Finally, artificial neural network (ANN) modeling is utilized to predict kinetics of essential oil extraction. Result revealed that extraction time and voltage gradient had significant effect on extraction yield, energy consumption and TPC (p<0.05). Extraction yields of essential oil obtained by OAHD and HD were 0.119 ± 0.012 and 0.081 ± 0.01, respectively. There was no significant difference (p>0.05) between specific gravity, refractive index and TPC of essential oil of OAHD and HD methods, however IC50 of essential oil extracted by OAHD was significantly higher than essential oil obtained with HD method (p<0.05). To design the ANN model, voltages gradient, extraction time and salt concentrations and their interactions were considered as input vectors while the extraction yield of essential oil was considered as the model output. The results showed that the best prediction performance belonged to 3-9-8-1 ANN architecture (RMSE=0.036 and R2=0.99). Therefore, it can be concluded that the OAHD method is applicable for S. aegyptiaca L. essential oil extraction and ANN model is an efficient quantitative tool to predict the kinetics of essential oil extraction.

کلیدواژه‌ها English

Salix aegyptiaca L
Ohmic assisted hydrodistillation
artificial neural network
Extraction yield
1. Shamspur T, Sheikhshoaie I, Afzali D, Mostafavi A, Mirtadzadini S. Chemical Compositions of Salix aegyptiaca. L. Obtained by Simultaneous Hydrodistilation and Extraction. Journal of Essential Oil Bearing Plants. 2011;14(5):543-8.
2. Sayyari Z, Farahmandfar R. Stabilization of sunflower oil with pussy willow (Salix aegyptiaca) extract and essential oil. Food science & nutrition. 2017;5(2):266-72.
3. Enayat S, Banerjee S. Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chemistry. 2009;116(1):23-8.
4. Hashemi SMB, Kamani MH, Amani H, Khaneghah AM. Voltage and NaCl concentration on extraction of essential oil from Vitex pseudonegundo using ohmic-hydrodistillation. Industrial Crops and Products. 2019;141:111734.
5. Hashemi SMB, Nikmaram N, Esteghlal S, Khaneghah AM, Niakousari M, Barba FJ, et al. Efficiency of Ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. Innovative Food Science & Emerging Technologies. 2017;41:172-8.
6. Hashemi SMB, Khaneghah AM, Koubaa M, Barba FJ, Abedi E, Niakousari M, et al. Extraction of essential oil from Aloysia citriodora Palau leaves using continuous and pulsed ultrasound: Kinetics, antioxidant activity and antimicrobial properties. Process Biochemistry. 2018;65:197-204.
7. Asl RMZ, Niakousari M, Gahruie HH, Saharkhiz MJ, Khaneghah AM. Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics. Food Research International. 2018;107:462-9.
8. Roohi R, Hashemi SMB. Experimental and computational fluid dynamics modeling of Satureja khuzestanica essential oil extraction during ohmic‐hydrodistillation. Journal of Food Process Engineering. 2019;42(5):e13083.
9. Achir N, Dhuique-Mayer C, Hadjal T, Madani K, Pain J-P, Dornier M. Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science & Emerging Technologies. 2016;33:397-404.
10. Gavahian M, Farahnaky A. Ohmic-assisted hydrodistillation technology: A review. Trends in Food Science & Technology. 2018;72:153-61.
11. Gavahian M, Farahnaky A, Farhoosh R, Javidnia K, Shahidi F. Extraction of essential oils from Mentha piperita using advanced techniques: Microwave versus ohmic assisted hydrodistillation. Food and Bioproducts Processing. 2015;94:50-8.
12. Gavahian M, Chu Y-H. Ohmic accelerated steam distillation of essential oil from lavender in comparison with conventional steam distillation. Innovative Food Science & Emerging Technologies. 2018;50:34-41.
13. Seidi Damyeh M, Niakousari M, Golmakani MT, Saharkhiz MJ. Microwave and ohmic heating impact on the in situ hydrodistillation and selective extraction of Satureja macrosiphonia essential oil. Journal of Food Processing and Preservation. 2016;40(4):647-56.
14. Gavahian M, Farahnaky A, Javidnia K, Majzoobi M. A novel technology for extraction of essential oil from Myrtus communis: ohmic-assisted hydrodistillation. Journal of Essential Oil Research. 2013;25(4):257-66.
15. Manouchehri R, Saharkhiz MJ, Karami A, Niakousari M. Extraction of essential oils from damask rose using green and conventional techniques: Microwave and ohmic assisted hydrodistillation versus hydrodistillation. Sustainable Chemistry and Pharmacy. 2018;8:76-81.
16. Gavahian M, Lee Y-T, Chu Y-H. Ohmic-assisted hydrodistillation of citronella oil from Taiwanese citronella grass: Impacts on the essential oil and extraction medium. Innovative Food Science & Emerging Technologies. 2018;48:33-41.
17. Gavahian M, Farahnaky A, Javidnia K, Majzoobi M. Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. Innovative Food Science & Emerging Technologies. 2012;14:85-91.
18. Bahmani L, Aboonajmi M, Arabhosseini A, Mirsaeedghazi H. ANN modeling of extraction kinetics of essential oil from tarragon using ultrasound pre-treatment. Engineering in agriculture, environment and food. 2018;11(1):25-9.
19. Okeleye AA, Betiku E. Kariya (Hildegardia barteri) seed oil extraction: comparative evaluation of solvents, modeling, and optimization techniques. Chemical Engineering Communications. 2019;206(9):1181-98.
20. Pavlić B, Kaplan M, Bera O, Olgun EO, Canli O, Milosavljević N, et al. Microwave-assisted extraction of peppermint polyphenols–Artificial neural networks approach. Food and Bioproducts Processing. 2019;118:258-69.
21. Akbar A, Kuanar A, Patnaik J, Mishra A, Nayak S. Application of artificial neural network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.). Computers and Electronics in Agriculture. 2018;148:160-78.
22. Tunç MT, Koca I. Ohmic heating assisted hydrodistillation of clove essential oil. Industrial Crops and Products. 2019;141:111763.
23. Hasheminya S-M, Dehghannya J. Composition, phenolic content, antioxidant and antimicrobial activity of Pistacia atlantica subsp. kurdica hulls’ essential oil. Food Bioscience. 2020;34:100510.
24. Vosoughi N, Gomarian M, Pirbalouti AG, Khaghani S, Malekpoor F. Essential oil composition and total phenolic, flavonoid contents, and antioxidant activity of sage (Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Industrial Crops and Products. 2018;117:366-74.
25. Codex FFC. FCC: Food Chemical Codex. 4 ed: National Academic Press, Washington DC; 1996.
26. Afshari-Jouybari H, Farahnaky A. Evaluation of Photoshop software potential for food colorimetry. Journal of Food Engineering. 2011;106(2):170-5.
27. Al-Hilphy ARS. A practical study for new design of essential oils extraction apparatus using ohmic heating. International Journal of Agricultural Science. 2014;4(12):351-66.
28. Hashemi A, Asefpour Vakilian K, Khazaei J, Massah J. An artificial neural network modeling for force control system of a robotic pruning machine. Journal of Information and Organizational Sciences. 2014;38(1):35-41.