[1] Fellows, P. J. (2009a). 11 - Blanching. In P. J. Fellows (Ed.), Food Processing Technology (Third Edition) (pp. 369-380): Woodhead Publishing.
[2] Fellows, P. J. (2009b). 16 - Dehydration. In P. J. Fellows (Ed.), Food Processing Technology (Third Edition) (pp. 481-524): Woodhead Publishing.
[3] Pitarch, J. L., Vilas, C., de Prada, C., Palacín, C. G., & Alonso, A. A. (2021). Optimal operation of thermal processing of canned tuna under product variability. Journal of Food Engineering, 304, 110594. doi: https://doi.org/10.1016/j.jfoodeng.2021.110594
[4] Fasina, O. O., & Fleming, H. P. (2001). Heat transfer characteristics of cucumbers during blanching. Journal of Food Engineering, 47(3), 203-210. doi: https://doi.org/10.1016/S0260-8774(00)00117-5
[5] Buyel, J. F. (2016). Numeric simulation can be used to predict heat transfer during the blanching of leaves and intact plants. Biochemical Engineering Journal, 109, 118-126. doi: https://doi.org/10.1016/j.bej.2016.01.009
[6] Crocombe, J., Lovatt, S., & Clarke, R. (1999). Evaluation of chilling time shape factors through the use of three-dimensional surface modeling. Paper presented at the Proceedings of 20th International Congress of Refrigeration, IIR/IIF, Sydney.
[7] Du, Z., Hu, Y., Ali Buttar, N., & Mahmood, A. (2019). X-ray computed tomography for quality inspection of agricultural products: A review. 7(10), 3146-3160. doi: https://doi.org/10.1002/fsn3.1179
[8] Zhu, L., Spachos, P., Pensini, E., & Plataniotis, K. N. (2021). Deep learning and machine vision for food processing: A survey. Current Research in Food Science, 4, 233-249. doi: https://doi.org/10.1016/j.crfs.2021.03.009
[9] Goñi, S. M., Purlis, E., & Salvadori, V. O. (2007). Three-dimensional reconstruction of irregular foodstuffs. Journal of Food Engineering, 82(4), 536-547. doi: https://doi.org/10.1016/j.jfoodeng.2007.03.021
[10] Goñi, S. M., Purlis, E., & Salvadori, V. O. (2008). Geometry modelling of food materials from magnetic resonance imaging. Journal of Food Engineering, 88(4), 561-567. doi: https://doi.org/10.1016/j.jfoodeng.2008.03.020
[11] Uyar, R., & Erdogdu, F. (2012). Numerical Evaluation of Spherical Geometry Approximation for Heating and Cooling of Irregular Shaped Food Products. 77(7), E166-E175. doi: https://doi.org/10.1111/j.1750-3841.2012.02769.x
[12] Fricke, B. A., & Becker, B. R. (2006). Sensitivity of freezing time estimation methods to heat transfer coefficient error. Applied Thermal Engineering, 26(4), 350-362. doi: https://doi.org/10.1016/j.applthermaleng.2005.07.005
[13] Salas-Valerio, W., Solano-Cornejo, M., Zelada-Bazán, M., & Vidaurre-Ruiz, J. (2019). Three-dimensional modeling of heat transfer during freezing of suspended and in-contact-with-a-surface yellow potatoes and ullucus. 42(6), e13174. doi: https://doi.org/10.1111/jfpe.13174
[14] Ebrahimnia-Bajestan, E., Niazmand, H., Etminan-Farooji, V., & Ebrahimnia, E. (2012). Numerical Modeling of the Freezing of a Porous Humid Food inside a Cavity due to Natural Convection. Numerical Heat Transfer, Part A: Applications, 62(3), 250-269. doi: 10.1080/10407782.2012.691050
[15] Murray, G. P. E., & Saunders, M. A. (2002). “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization”. SIAM Journal on Optimization, 12(4), 979-100
[16] Dalvi, M., & Hamdami, N. (2011). Characterization of Thermophysical Properties of Iranian Ultrafiltrated White Cheese: Measurement and Modeling. Journal of Agricultural Science and Technology. 13(1), 67-78.
[17] Erdogdu, F., & Turhan, M. (2008). Analytical solutions in conduction heat transfer problems. In F. Erdogdu (Ed.), Optimization in Food Engineering (pp. 19-29). FL: CRC Press, Boca Raton.
[18] Ozisik¸, M. N. (1993). Heat Conduction. 2nd ed. Wiley, New York.
[19] Iribe-Salazar, R., Caro-Corrales, J., Hernández-Calderón, Ó., Zazueta-Niebla, J., Gutiérrez-Dorado, R., Carrazco-Escalante, M., & Vázquez-López, Y. (2015). Heat Transfer during Blanching and Hydrocooling of Broccoli Florets. 80(12), E2774-E2781. doi: https://doi.org/10.1111/1750-3841.13109
[20] Scheerlinck, N., Marquenie, D., Jancsók, P. T., Verboven, P., Moles, C. G., Banga, J. R., & Nicolaı̈, B. M. (2004). A model-based approach to develop periodic thermal treatments for surface decontamination of strawberries. Postharvest Biology and Technology, 34(1), 39-52. doi: https://doi.org/10.1016/j.postharvbio.2004.04.004
[21] Alhamdan, A., & Sastry, S. K. (1990). Natural convection heat transfer between non-newtonian fluids and an irregular shaped particle1. Journal of Food Process Engineering, 13(2), 113-124. doi: https://doi.org/10.1111/j.1745-4530.1990.tb00062.x
[22] Garrote, R. L., Silva, E. R., Bertone, R. A., & Roa, R. D. (2004). Predicting the end point of a blanching process. LWT - Food Science and Technology, 37(3), 309-315. doi: https://doi.org/10.1016/j.lwt.2003.07.008
[23]Mauricio, V.-R. J., & Francisco, S.-V. W. (2017). Modeling Heat Transfer During Blanching of Cubic Particles of Loche (Cucurbita moschata Duch.) and Potato (Solanum tuberosum L.) Using Finite Difference Method. 40(3), e12451. doi: https://doi.org/10.1111/jfpe.1