تأثیر هندسه محصول بر روی مدل سازی دقیق انتقال حرارت میوه های دارای شکل نامنظم در حین فرایند آنزیم‌بری

نویسندگان
استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران. تلفن 07154344445
چکیده
اُفت کیفیت در حین فرایند آنزیم‌بری را با انتخاب برنامه دما- زمان مناسب می‌توان به حداقل رساند. در این مطالعه‌، فرآیند آنزیم‌بری میوه توت سیاه در 3 درجه حرارت منتخب بررسی شد. خصوصیات ترموفیزیکی بر اساس ترکیب شیمیایی نمونه تخمین زده شد. ضریب انتقال گرما همرفتی نیز با استفاده از یک تکنیک جدید به نام روش مسئله معکوس برآورد شد. به منظور تعیین بهترین مدلی که بتواند شکل میوه را توصیف کند و تغییرات دمایی را به طور دقیق پیش بینی کند، سه مدل تحلیلی بر اساس راه حل قانون دوم فوریه برای انتقال گرما روی اشکال منظم (کُره ، مستطیل 2 بعدی و استوانه محدود) و یک مدل عددی بر اساس هندسه واقعی نمونه توسعه داده شد.. نتایج نشان داد که در بین مدل های تحلیلی‌، شکل مستطیل (دو بعدی) بهتر توانست تغییرات دما را در نقطه مرکزی نمونه پیش بینی کند. با این وجود‌، مدل عددی توسعه یافته به دلیل بالاترین ضریب تبیین (R2>99) و کمترین ریشه میانگین مربعات خطا (RMSE=0.37) به عنوان بهترین مدل شناخته شد. با استفاده از این مدل‌، تغییرات دما در میوه را می‌توان با دقت بالا به عنوان تابعی از متغیرهای داخلی (ضخامت و ترکیب شیمیایی) و خارجی (دما و سرعت حمام آب) پیش بینی کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Impact of product geometry on accurate heat transfer modelling of irregular shaped fruit during blanching process

نویسندگان English

mohsen Dalvi-Isfahan
Abdollah Hematian sourki
Assistant professor, Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran.
چکیده English

Quality losses during blanching can be minimized by adequately selecting the time-temperature schedule. In this study, the blanching process of blackberry fruits at 3 selected temperatures were investigated. The thermophysical properties were estimated based on the chemical composition of the sample. Convective heat transfer coefficient was also estimated using a new novel technique called inverse problem method. In order to determine the best model that can describe the shape of the fruit and predict accurately temperature changes during blanching, three analytical models based on solution of Fourierchr('39')s second law for heat transfer on regular shapes (sphere, 2D rectangle and finite cylinder) and a numerical model based on the real geometry of the sample were developed. The results showed that among the analytical models, the two-dimensional rectangle can better predict temperature changes at the center point of the sample than others. However, the developed numerical model was recognized as the best model due to the highest coefficient of determination (R2>99) and the lowest root mean square error (RMSE=0.37). By applying this model, temperature variations in the fruit can be predicted with high accuracy as a function of internal (thickness, and chemical composition) and external variables (temperature, and water bath velocity).

کلیدواژه‌ها English

Blackberry
Blanching
Modeling
[1] Fellows, P. J. (2009a). 11 - Blanching. In P. J. Fellows (Ed.), Food Processing Technology (Third Edition) (pp. 369-380): Woodhead Publishing.
[2] Fellows, P. J. (2009b). 16 - Dehydration. In P. J. Fellows (Ed.), Food Processing Technology (Third Edition) (pp. 481-524): Woodhead Publishing.
[3] Pitarch, J. L., Vilas, C., de Prada, C., Palacín, C. G., & Alonso, A. A. (2021). Optimal operation of thermal processing of canned tuna under product variability. Journal of Food Engineering, 304, 110594. doi: https://doi.org/10.1016/j.jfoodeng.2021.110594
[4] Fasina, O. O., & Fleming, H. P. (2001). Heat transfer characteristics of cucumbers during blanching. Journal of Food Engineering, 47(3), 203-210. doi: https://doi.org/10.1016/S0260-8774(00)00117-5
[5] Buyel, J. F. (2016). Numeric simulation can be used to predict heat transfer during the blanching of leaves and intact plants. Biochemical Engineering Journal, 109, 118-126. doi: https://doi.org/10.1016/j.bej.2016.01.009
[6] Crocombe, J., Lovatt, S., & Clarke, R. (1999). Evaluation of chilling time shape factors through the use of three-dimensional surface modeling. Paper presented at the Proceedings of 20th International Congress of Refrigeration, IIR/IIF, Sydney.
[7] Du, Z., Hu, Y., Ali Buttar, N., & Mahmood, A. (2019). X-ray computed tomography for quality inspection of agricultural products: A review. 7(10), 3146-3160. doi: https://doi.org/10.1002/fsn3.1179
[8] Zhu, L., Spachos, P., Pensini, E., & Plataniotis, K. N. (2021). Deep learning and machine vision for food processing: A survey. Current Research in Food Science, 4, 233-249. doi: https://doi.org/10.1016/j.crfs.2021.03.009
[9] Goñi, S. M., Purlis, E., & Salvadori, V. O. (2007). Three-dimensional reconstruction of irregular foodstuffs. Journal of Food Engineering, 82(4), 536-547. doi: https://doi.org/10.1016/j.jfoodeng.2007.03.021
[10] Goñi, S. M., Purlis, E., & Salvadori, V. O. (2008). Geometry modelling of food materials from magnetic resonance imaging. Journal of Food Engineering, 88(4), 561-567. doi: https://doi.org/10.1016/j.jfoodeng.2008.03.020
[11] Uyar, R., & Erdogdu, F. (2012). Numerical Evaluation of Spherical Geometry Approximation for Heating and Cooling of Irregular Shaped Food Products. 77(7), E166-E175. doi: https://doi.org/10.1111/j.1750-3841.2012.02769.x
[12] Fricke, B. A., & Becker, B. R. (2006). Sensitivity of freezing time estimation methods to heat transfer coefficient error. Applied Thermal Engineering, 26(4), 350-362. doi: https://doi.org/10.1016/j.applthermaleng.2005.07.005
[13] Salas-Valerio, W., Solano-Cornejo, M., Zelada-Bazán, M., & Vidaurre-Ruiz, J. (2019). Three-dimensional modeling of heat transfer during freezing of suspended and in-contact-with-a-surface yellow potatoes and ullucus. 42(6), e13174. doi: https://doi.org/10.1111/jfpe.13174
[14] Ebrahimnia-Bajestan, E., Niazmand, H., Etminan-Farooji, V., & Ebrahimnia, E. (2012). Numerical Modeling of the Freezing of a Porous Humid Food inside a Cavity due to Natural Convection. Numerical Heat Transfer, Part A: Applications, 62(3), 250-269. doi: 10.1080/10407782.2012.691050
[15] Murray, G. P. E., & Saunders, M. A. (2002). “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization”. SIAM Journal on Optimization, 12(4), 979-100
[16] Dalvi, M., & Hamdami, N. (2011). Characterization of Thermophysical Properties of Iranian Ultrafiltrated White Cheese: Measurement and Modeling. Journal of Agricultural Science and Technology. 13(1), 67-78.
[17] Erdogdu, F., & Turhan, M. (2008). Analytical solutions in conduction heat transfer problems. In F. Erdogdu (Ed.), Optimization in Food Engineering (pp. 19-29). FL: CRC Press, Boca Raton.
[18] Ozisik¸, M. N. (1993). Heat Conduction. 2nd ed. Wiley, New York.
[19] Iribe-Salazar, R., Caro-Corrales, J., Hernández-Calderón, Ó., Zazueta-Niebla, J., Gutiérrez-Dorado, R., Carrazco-Escalante, M., & Vázquez-López, Y. (2015). Heat Transfer during Blanching and Hydrocooling of Broccoli Florets. 80(12), E2774-E2781. doi: https://doi.org/10.1111/1750-3841.13109
[20] Scheerlinck, N., Marquenie, D., Jancsók, P. T., Verboven, P., Moles, C. G., Banga, J. R., & Nicolaı̈, B. M. (2004). A model-based approach to develop periodic thermal treatments for surface decontamination of strawberries. Postharvest Biology and Technology, 34(1), 39-52. doi: https://doi.org/10.1016/j.postharvbio.2004.04.004
[21] Alhamdan, A., & Sastry, S. K. (1990). Natural convection heat transfer between non-newtonian fluids and an irregular shaped particle1. Journal of Food Process Engineering, 13(2), 113-124. doi: https://doi.org/10.1111/j.1745-4530.1990.tb00062.x
[22] Garrote, R. L., Silva, E. R., Bertone, R. A., & Roa, R. D. (2004). Predicting the end point of a blanching process. LWT - Food Science and Technology, 37(3), 309-315. doi: https://doi.org/10.1016/j.lwt.2003.07.008
[23]Mauricio, V.-R. J., & Francisco, S.-V. W. (2017). Modeling Heat Transfer During Blanching of Cubic Particles of Loche (Cucurbita moschata Duch.) and Potato (Solanum tuberosum L.) Using Finite Difference Method. 40(3), e12451. doi: https://doi.org/10.1111/jfpe.1