استفاده از بتاکاروتن درون پوشانی شده با پروتئین آب پنیر و کازئین و بررسی اثرات آن در ماندگاری روغن کانولا طی شرایط نگهداری

نویسندگان
1 1- دانشجوی دکترای گروه علوم و صنایع غذایی، واحد سروستان ، دانشگاه آزاد اسلامی، سروستان، ایران
2 استادیار گروه علوم و صنایع غذایی، واحد سروستان ، دانشگاه آزاد اسلامی، سروستان، ایران
3 دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فسا، فسا، ایران
چکیده
ریزپوشانی یک تکنولوژی مناسب جهت گنجاندن عوامل فعال در داخل یک حامل می‌باشد. در این مطالعه نسبت‌های وزنی از دو محلول کازئین و پروتئین آب پنیر به نسبت‌های 70:30، 50:50و 30:70، حاوی 5 درصد وزنی بتاکاروتن در 100 گرم ماده دیواره جهت ریزپوشانی به روش خشک‌کن پاششی مورد مطالعه قرار گرفت. نتایج نشان داد نمونه‌های حاوی 70 درصد پروتئین آب پنیر و 30 درصد کازئین بهترین پارامترهای فیزیکی و شیمیایی را نشان داده است. نتایج نشان داد کارایی ریزپوشانی (426/70 درصد)، ترکیبات فنولی (106/4 میکروگرم/میلی‌گرم)، مهار رادیکالی آزاد (856/36 درصد)، پایداری رنگ بتاکاروتن (176/75 درصد) و FRAP (156/304 میکرومول آهن در گرم) نمونه­ها در خلال افزایش غلظت پروتئین آب پنیر، روندی صعودی را طی نمود ولی اندازه ذرات (086/11 نانومتر) با افزایش غلظت پروتئین آب پنیر به طور معنی‌داری روندی کاهشی را نشان داد. در ادامه مطالعه نمونه نسبت 30 درصد کازئین به 70 درصد پروتئین آب پنیر به عنوان بهترین تیمار معرفی و سپس در سه غلظت (200 ،700 و1200 پی‌پی‌ام) به نمونه روغن کانولا اضافه شد. نتایج نشان داد میزان ترکیبات قطبی، اسیدی، پراکسید نمونه­های روغن در طی زمان روندی صعودی و شاخص پایداری روندی کاهشی را طی نموده است. با افزایش غلظت ریزکپسول تا 1200 پی‌پی‌ام در مقایسه با غلظت کمتر خود میزان عدد قطبی، پراکسید و اسیدی به طور معنی‌داری کمتر بود. در نتیجه گیری نهایی میزان عدد اسیدی، پراکسید و عدد قطبی روغن حاوی 1200 پی‌پی‌ام در کمترین میزان به ترتیب 13/1%، 46/7 میلی‌اکی‌والان اکسیژن بر کیلوگرم روغن و 41/42 درصد بود. بطور کلی نتایج این مطالعه نشان داد پروتئین آب پنیر/کازئین یکی از منابع مهم می‌باشد که می‌توان از آن برای پوشش‌دهی ترکیبات زیست فعال استفاده نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Use of beta-carotene encapsulated with whey protein and casein and its effects on the shelf life of canola oil during storage

نویسندگان English

Seyed Sajad Malekhossini 1
Alireza Shirazinejad 2
Seyed Mohammad Bagher Hashemi 3
1 PhD student, Department of Food Science and Technology, Faculty of Agriculture, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
2 Department of Food Science and Technology, Faculty of Agriculture, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
3 Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
چکیده English

Microencapsulation is a suitable technology for incorporating active agents into a carrier. In the present study, the weight ratios of two solutions of casein and whey protein in the ratios of 70:30, 50:50 and 30:70, containing 5% by weight of beta-carotene per 100g of wall material for microencapsulation were studied by spray drying method. The results indicated that samples containing 70% whey protein and 30% casein showed the best physical and chemical parameters. The results showed the efficiency of microencapsulation (70.44%), phenolic compounds (4.11 μg/mg), free radical scavenging (36.86%), dye stability of beta-carotene (75.18%) and FRAP (304.15 μmol of iron/gr). The samples revealed an upward trend during the increase in whey protein concentration. However, the particle size (11.09 nm) showed a decreasing trend with increasing whey protein concentration. In the following, the ratio of 30% casein to 70% whey protein was introduced as the best treatment and then added to the canola oil sample in three concentrations (200, 700 and 1200 ppm). The results indicated that the amount of polar compounds, acidic, peroxide in the oil samples during the upward trend time and the stability index has decreased. With increasing the concentration of microcapsules up to 1200 ppm, the polar content, peroxide and acid numbers were significantly lower compared to their lower concentrations. As a result, the acid number, peroxide and polar number of oil containing 1200 ppm in the lowest amount were 1.13%, 7.46 mA/kg of oil and 42.41%, respectively. In general, the results of this study showed that whey protein/casein is one of the important sources that can be used to coat bioactive compounds.

کلیدواژه‌ها English

Whey protein
Casein
Beta-carotene
Encapsulation
Canola oil
1. Shao, P., Feng, J., Sun, P., & Ritzoulis, C. Improved emulsion stability and resveratrol encapsulation by whey protein/gum arabic interaction at oil-water interface. International Journal of Biological Macromolecules, 2019. 133(1): p. 466-472.
2. Soleimanifar, M., S.M. Jafari, and E. Assadpour, Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization. Food Hydrocolloids, 2020. 101(1): p. 105572.
3. Villiers, M.M.d., P. Aramwit, and G.S. Kwon, Nanotechnology in Drug Delivery. 2008: Springer Science & Business Media.
4. Esfanjani, A.F., S.M. Jafari, and E. Assadpour, Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chemistry, 2017. 221(1): p. 1962-1969.
5. Tavares, L., C. Pelayo, and Z. Noreña, Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids, 2019. 89(1): p. 360-369.
6. Talóna, E., Lampi, A.-M., Vargas, M., Chiralt, A., Jouppil, K., & González-Martíneza, C. Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: Release kinetics, antioxidant and antimicrobial properties. Food Chemistry, 2019. 295(1): p. 588-598.
7. Ribeiro, A.M., B.N. Estevinho, and F. Rocha, Spray Drying Encapsulation of Elderberry Extract and Evaluating the Release and Stability of Phenolic Compounds in Encapsulated Powders. Food and Bioprocess Technology, 2019. 12(1): p. 1381-1394.
8. AlexandraTsali and A.M. Goula, Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technology, 2018. 340(1): p. 194-207.
9. Schmid, M. and K. Müller, Chapter 11 - Whey Protein-Based Packaging Films and Coatings. Whey Proteins, 2019. 11(1): p. 407-437.
10. Chaari, M., Theochari, b., Papadimitriou, V., Xenakis, A., & Ammar, E.Encapsulation of carotenoids extracted from halophilic Archaea in oil-in-water (O/W) micro- and nano-emulsions. Colloids and Surfaces B: Biointerfaces, 2018. 161(1): p. 219-227.
11. Eun, J.-B., Maruf, A., Das, R., & Nam, S.-H.. A review of encapsulation of carotenoids using spray drying and freeze drying. Critical Reviews in Food Science and Nutrition 2020. 60(1): p. 3547-3572.
12. Qiu, J., Zheng, Q., Fang, L., Wang, Y., Min, M., Shen, C., & Xiong, C. Preparation and characterization of casein-carrageenan conjugates and self-assembled microcapsules for encapsulation of red pigment from paprika. Carbohydrate Polymers, 2018. 196(18): p. 322-331.
13. Rajabia, H., Jafari, S. M., Rajabzadeh, G., Sarfarazi, M., & Sedaghatia, S. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 578.
14. Arpagaus, C., PLA/PLGA nanoparticles prepared by nano spray drying. Journal of Pharmaceutical Investigation, 2019. 49(1): p. 405-426.
15. Sarabandi, K., Jafari, S. M., Sadeghi, A., & Mohammadi, M. k. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 2019. 140(1): p. 59-68.
16. Shen, Y., Zhang, H., Mia, X., Zhang, H., Cheng, L., Qi, Y., & Zhang, H. Effects of extraction solvents on antioxidant activities and total phenolic contents of four whole grains. European Journal of BioMedical Research, 2017. 1(1): p. 2428-5544.
17. Oliveira, G. K. F., Sousa, R. M. F., Morais, S. A. L. d., & Muno, R. A. A. Batch-injection analysis with amperometric detection of the DPPH radical for evaluation of antioxidant capacity. Food Chemistry, 2016. 192(1): p. 691-697.
18. Alam, Bristi, and Rafiquzzaman, Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 2013. 21: p. 143-152.
19. Chemat, S., Edible Oils: Extraction, Processing, and Applications. Vol. 1. 2017: CRC Press- Technology & Engineering.
20. Fang, X., Shuo, L., Eitaro, W., Shigeru, M., Jieyu, T., & Zhanga, C. H. Model for prediction of the carbonyl value of frying oil from the initial composition. LWT, 2020. 117(1): p. 55-60.
21. Shantha and Decker, Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. Journal of AOAC International Food Research Journal 1993. 421-424(11).
22. Farhoosh, KHodaparast, and A. .M, Olive oil oxidation: rejection points in terms of polar, conjugated diene, and carbonyl values. Food chemistry, 2012. 131(9211-9245).
23. Yang, S., Mao, X.-Y., Li, F.-F., Zhang, D., Leng, X.-J., Ren, F.-Z., & Teng, G.-X. The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur Food Res Technol, 2012. 235(1): p. 91-97.
24. Butstraen, C. and F. Salaün, Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate polymers, 2014. 99(1): p. 608-616.
25. Estakhr,p ., Tavakoli,J . Beigmohammadi, F . Alaei , shima .and Mousavi khaneghah , Amin . Incorporation of the nanoencapsulated polyphenolic extract of Ferula persica into soybean oil: Assessment of oil oxidative stability. Food Science & Nutrition, 2020. 8(6): p. 2817-2826.
26. Pérez-Masiá, R., j.m. Lagaron, and A. Lopez-Rubio, Morphology and Stability of Edible LycopeneContaining Micro- and Nanocapsules Produced Through Electrospraying and Spray Drying. Foo Bioprocess Tech, 2015. 8(2): p. 459-470.
27. Premi, M. and H.K. Sharma, Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 2017. 105(1): p. 1232-1240.
28. Shao, P., Feng, J., Sun, P., & Ritzoulis, C. Improved emulsion stability and resveratrol encapsulation by whey protein/gum arabic interaction at oil-water interface. International Journal of Biological Macromolecules, 2019. 133(15): p. 466-472.
29. Hu, Y., Kou, G., Chen, Q., Li, Y., & Zhoua, Z. Protection and delivery of mandarin (Citrus reticulata Blanco) peel extracts by encapsulation of whey protein concentrate nanoparticles. LWT, 2019. 99(1): p. 24-33.
30. Pourashouri, P., B. Shabanpour, and S.H. Razavi, Impact of Wall Materials on Physicochemical Properties of Microencapsulated Fish Oil by Spray Drying. Food Bioprocess Technol, 2014. 7(1): p. 2354-2365.
31. Talón, E., Lampi, A.-M., Vargas, M., Chiralt, A., Jouppila, K., & González-Martíneza, C. Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: Release kinetics, antioxidant and antimicrobial properties. Food Chemistry, 2019. 295(15): p. 588-598.
32. Fang, Z., Xu, X., Cheng, H., Li, J., Guanga, C. e., & Liang, L. Comparison of whey protein particles and emulsions for the encapsulation and protection of α-tocopherol. Journal of Food Engineering, 2019. 247(1): p. 56-63.
33. Adrar, N., N. Oukil, and F. Bedjou, Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination. Industrial Crops and Products, 2016. 88(15): p. 112-119.
34. Wang, l.-Z., Fub, S.-G., Wang, S.-Y., Yang, D.-J., Samuel, Y.-H., & Chena, W. Y.-C. Effects of a natural antioxidant, polyphenol-rich rosemary (Rosmarinus officinalis 0200L.) extract, on lipid stability of plant-derived omega-3 fatty-acid rich oil. LWT - Food Science and Technology, 2018. 89(51): p. 210-216.
35. Milani, P.G., M. Formigoni, and Y.C. Lima, Fortification of the whey protein isolate antioxidant and antidiabetic activity with fraction rich in phenolic compounds obtained from Stevia rebaudiana (Bert.). J Food Sci Technol, 2017. 54(1): p. 2020-2029.
36. Bierzuńska, P. and D. Cais-Sokolińska, Determination of antioxidant activity of yoghurt enriched with polymerized whey protein. Faculty of Food Science and Nutrition, 2018. 68(4): p. 44-52.
37. Liu, W., Dong, X., ZenenCheng, C., & Selomuly, C. On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 2016. 169(1): p. 189-195.
38. An, K.-J., Y.-L. Liu, and H.-L. Liu, Relationship between total polar components and polycyclic aromatic hydrocarbons in fried edible oil. Food Additives & Contaminants: Part A 2017. 17(1): p. 1596-1605.
39. Neves, I. C. O., Silva, b. H., Oliveira, N. L., Lago, A. M. T., Ariann, N. N., Henrique, S. P., & Rogersb, M. A. Effect of carrier oil on α-tocopherol encapsulation in ora-pro-nobis (Pereskia aculeata Miller) mucilage-whey protein isolate microparticles. Food Hydrocolloids, 2020. 105(1): p. 105716.
40. Zhang, H., Fana, Q., Lia, D., Chena, X., & Lianga, L. Impact of gum Arabic on the partition and stability of resveratrol in sunflower oil emulsions stabilized by whey protein isolate. Colloids and Surfaces B: Biointerfaces, 2019. 181(1): p. 749-755.
41. Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT, 2019. 113(1): p. 108290.
42. Encina, C., Márquez-Ruizb, G., aHolgado, F., Giménez, B., Vergarad, C., & Roberta, P. Effct of spray-drying with organic solvents on the encapsulation, release and stability of fish oil. Food Chemistry, 2018. 263(1): p. 283-291.
43. Hosseinialhashemi, M., Tavakoli , Javad . Rafati, Alireza .Ahmadi, Fatemeh . The aplication of Pistacia khinjuk extract nanoemulsion in a biopolymeric coating to improve the shelf life extension of sunflower oil. Food Science & Nutrition, 2020. 9(2): p. 920-928.
44. Dana, D., M, M., Blumenthal, I., & Saguy, S. The protective role of water injection on oil quality in deep fat frying conditions. European Food Research and Technology, 2003. 217(2): p. 104-109.
45. Duan, J., Y. Jiang, and Y. Zhao, Chitosan-Whey Protein Isolate Composite Films for Encapsulation and Stabilization of Fish Oil Containing Ultra Pure Omega‐3 Fatty Acids. Journal of Food Science, 2011. 11(1): p. 25-35.
46. Roshanpour , s. Tavakoli, Javad. Beigmohammadi, Faranak. Alaei, Shima. Improving antioxidant effect of phenolic extract of Mentha piperita using nanoencapsulation process. Journal of Food Measurement and Characterization, 2021. 15(1): p. 23-32.
47. Farhoosh, The effect of operational parameters of the Rancimat method on the determination of the oxidative stability measures and shelf-life prediction of soybean oil. Journal of the American Oil Chemists' Society 2007. 205-209(3): p. 84.