بررسی خصوصیات فیزیکوشیمیایی، مکانیکی و ضد میکروبی نانوکامپوزیت حاصل از صمغ غلاف داخلی باقلا حاوی نانو ذره دی اکسید تیتانیوم و اسانس پونه کوهی

نویسندگان
1 گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
2 گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران.
3 گروه علوم وصنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران.
چکیده
فیلم­های خوراکی که علاوه بر ایجاد اثرات سودمند از طریق حمل ترکیبات ضدمیکروبی، آنتی­اکسیدانی و غیره، دارای خصوصیات زیست تخریب­پذیر هستند، مورد توجه بسیاری از محققین قرار گرفته است. در این تحقیق از صمغ حاصل از غلاف درونی باقلا به همراه دو غلظت از گلیسرول (40 و 60 %) و سه غلظت 1، 2 و 3 درصد از اسانس پونه کوهی برای تولید فیلم­ها استفاده شد. پس از بررسی خصوصیات فیزیکوشیمیایی و مکانیکی فیلم­ها، بهترین تیمار با نانوذره اکسیدتیتانیوم در دو غلظت 1 و 2 درصد تهیه و خصوصیات ضدمیکروبی آن نیز مورد بررسی قرار گرفت. نتایج این تحقیق نشان داد که با افزایش اسانس بر ضخامت فیلم افزوده شد در حالی­که غلظت­های بالای اسانس سبب کاهش رطوبت فیلم­ها گردید. افزودن اسانس به نمونه سبب کاهش حلالیت آن­ نسبت به نمونه شاهد شد و نمونه­های با مقادیر بیشتر اسانس نیز حلالیت کمتری را نشان دادند. افزایش غلظت اسانس سبب افزایش کدورت و درصد مهارکنندگی رادیکال آزاد DPPH گردید. غلظت های بالای اسانس فاکتور روشنایی فیلم­ها را کم کرد اما فاکتور زردی و قرمزی را نسبت به نمونه کنترل افزایش داد. به دلیل برهمکنش روغن موجود در اسانس با صمغ، پیوستگی شبکه پلیمر کاهش یافت و در نتیجه مقاومت کششی و نیز فاکتور افزایش طول در نقطه پارگی کاهش پیدا کرد. اثر ضدمیکروبی فیلم­های با 3 درصد اسانس و حاوی 2 درصد اکسید تیتانیوم به طور معنی­داری (p<0.05) با سایر نمونه­ها بیشترین ناحیه بازدارندگی را در آزمون انتشار دیسک بر میکروارگانیسم­های استاف آرئوس، ایشرشیاکلی، سالمونلا تیفوئید، باسیلوس سرئوس و سودموناس آئروژنزا ایجاد کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of physicochemical, mechanical and antimicrobial properties of nanocomposite from bean inner pod gum containing nanoparticles of titanium dioxide and oregano essential oil

نویسندگان English

Mozhgan Nasiri Shahri 1
Ali Mohamadi Sani 2
Vahid Hakimzadeh 2
Mostafa Shahidi Noghabi 3
1 Department of Food Science and technology, Quchan Branch, Islamic Azad University, Quchan, Iran
2 Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.
3 Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
چکیده English

Edible films, which in addition to creating beneficial effects by carrying antimicrobial compounds, antioxidants, etc., have biodegradable properties, have attracted the attention of many researchers. In this study, the gum obtained from the inner pod of bean with two concentrations of glycerol (40 and 60%) and three concentration of oregano essential (1, 2 and 3%) oil was used to produce biofilms. After studying the physicochemical and mechanical properties of the resulting films, the best treatment was combined with titanium oxide nanoparticles in two concentrations of 1 and 2% and its antimicrobial properties were also investigated. The results showed that increasing the essential oil raised the film thickness, while high concentrations of essential oil decreased the moisture content of the films. Although the addition of essential oil reduced the solubility of films compared with control sample, but in the treatments with essential oil, increasing the essential oil reduced the solubility of the film. Increasing the concentration of essential oil also increased turbidity and free radical DPPH activity. High concentrations of essential oil decreased the lightness of the films but increased the yellowing and redness compared to the control sample. Due to the interaction of the oil in the essential oil with the gum, the cohesion of the polymer network decreased and consequently, the tensile strength and the elongation factor at the break point decreased. Antimicrobial effect of films with 3% essential oil and 2% titanium oxide had the highest inhibitory area in the disk diffusion test with other samples on Staphylococcus Aureus, Escherichia coli, Salmonella Typhoid, Bacillus Cereus and pseudomonas Aeruginosa significantly (p<0.05)

کلیدواژه‌ها English

Beans
Biodegradable
Oregano
Pseudomonas aeruginosa
Titanium Oxide
[1] Ray, S.S and Bousmina, M. 2005. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50, 962-1079.
[2] Ghanbarzadeh, B., Almasi, H. and Zahedi, Y. 2009. Biodegradable and edible biopolymers in food and drug packaging. Amir Kabir Press, Tehran University (In Persia).
[3] Gennadios, A. 2002. Soft gelatin capsules. In: Protein based Films and Coatings, pp: 393–443. CRC Press, Boca Raton, FL.
[4] Han, J.H. and Rooney, M. L. 2002. Personal communications, Active Food Packaging. Workshop, Annual Conference of the Canadian Institute of Food Science and Technology (CIFST).
[5] Izydorczyk, M., Cui, S.W. and Wang, Q., 2005. Polysaccharide gums: structures, functional properties, and applications. Food carbohydrates: Chemistry, physical properties, and applications, 293, p.299.
[6] Taghizadeh, N. and Hakimzadeh, V. 2017. Extraction and evaluation of physicochemical and rheological properties of bean pod shell gum. International Journal of Advanced Life Sciences. 10(2), 226-230.
[7] Han, J. H. 2003. Antimicrobial food packaging. In: Novel Food Packaging Techniques. Woodhead Publishing Ltd., Cambridge, UK. pp. 50–70.
[8] Bazzaz, A.E., Hakimzadeh, V. and Noghabi, M.S. 2019. Preparation and study of carboxymethyl cellulose biodegradable films properties containing Mentha pulegium essential oil. Journal of Thermoplastic Composite Materials, p.0892705719864148.
[9] Othman, S.H., Abd Salam, N.R., Zainal, N., Kadir Basha, R. and Talib, R.A. 2014. Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. International Journal of Photoenergy, 2014.
[10] Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J.B., Ghanati, K., Khakpour, M. and Khaksar, R. 2015. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, pp.606-613.
[11] Ghanbarzadeh B, Almasi H. 2011. Physical properties of edible emulsified based on carboxymethyl cellulose and oleic acid. International journal Biology Macromolecules, 48: 44-49.
[12] Park, H. J., Weller, C. L., Vergano, P. J. and Testin, R. F. 2003. Permeability and mechanical properties of cellulose-based edible films. Journal of Food Science, 58, (6), 1361–1364.
[13] Ghasemlou, M., Khodaiyan, F., Oromiehie, A. and Yarmand, M.S. 2011. Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 127(4), pp.1496-1502.
[14] Salarbashi, D., Tajik, S., Ghasemlou, M. and Shojaee-Aliabadi, S. 2013. Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging. Carbohydrate Polymers. 98, 1127-1136.
[15] ASTM, Standard test method for tensile properties of thin plastic sheeting D882–02, in Annual book of ASTM, Philadelphia, American Society for Testing and Materials, 2002.
[16] Byun, Y., Kim, Y.T. and Whiteside, S. 2010. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering, 100(2), pp.239-244.
[17] Arafat, M.T., Tronci, G., Yin, J., Wood, D.J. and Russell, S.J. 2015. Biomimetic wet-stable fibres via wet spinning and diacid-based crosslinking of collagen triple helices. Polymer, 77, pp.102-112.
[18] Mali, S., Grossmann, M.V.E., Garcı́a, M.A., Martino, M.N. and Zaritzky, N.E. 2005. Mechanical and thermal properties of yam starch films. Food Hydrocolloids, 19(1), pp.157-164.
[19] Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A. and Chafer, M. 2011. Use of essential oils in bioactive edible coatings: a review. Food Engineering Reviews, 3(1), pp.1-16.
[20] Jouki, M., Yazdi, F. T., Mortazavi, S. A. and Koocheki, A. 2014. Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties, Food Hydrocolloids, 36: 9-19.
[21] Gómez-Estaca, J., Bravo, L., Gómez- Guillén, M. C., Alemán, A., and Montero, P. 2009. Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts, Food Chemistry, 112(1): 18-25.
[22] Akhtar, M. J., Jacquot, M., Jamshidian, M., Imran, M., Arab-Tehrany, E. & Desobry, S. 2013. Fabrication and physicochemical characterization of HPMC films with commercial plant extract: Influence of light and film composition. Food Hydrocolloids,31, 420-427.
[23] Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M., Hosseini, S. M. and Khaksar, R. 2013. Characterization of antioxidantantimicrobial carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules. 52, 116-124.
[24] Pires C, Ramos C, Teixerira B, et al. Hake protein edible films incorporated with essential oils: physical, mechanical, antioxidant and antimicrobial properties. Food Hydrocolloid 2013; 30: 224–231.
[25] Negi, P.S., Chauhan, A.S., Sadia, G.A., Rohinishree, Y.S., Ramteke, R.S. 2004. Antioxidant and antibacterial activities of various sea buckthorns (Hippophae rhamnoides L.) seed extracts. Food Chemistry., 92: 119-124.
[26] Ojeda-Sana, A.M., van Baren, C.M., Elechosa, M.A., Juarez, M.A., Moreno, S. 2012. New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food contimination., 31: 189-195.
[27] Lian, Z., Zhang, Y., & Zhao, Y. 2016. Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2 migration from film matrix in food simulants. Innovative Food Science. Emer. Tech., 33, 145-153.
[28] Lin, B., Luo, Y., Teng, Zi, Zhang, B., Zhou, B., & Wang, Q. 2015. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology, 63(2), 1206-1213.
[29] Rawdkuen, S. 2018. Edible films incorporated with active compounds: their properties and application. In Active Antimicrobial Food Packaging. IntechOpen.
[30] Jahanpanahi, M., Mohamadi Sani, A. 2016. Antimicrobial effect of nanofluid including Zinc oxide (ZnO) nanoparticles and Mentha pulegium essential oil. Journal of Applied Biology and Biotechnology. 4(04), 85-89.