بررسی اثر نوع دانه‌گرده بر صفات مورفولوژیکی، میزان روغن، اسیدهای چرب و برخی عناصر نتاج حاصل از تلاقی کنترل شده بادام رقم شاهرود 12

نویسندگان
1 دانشجوی کارشناسی‌ارشد گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی
2 دانشیار گروه مهندسی علوم باغبانی و فضای سبز دانشکده کشاورزی دانشگاه ملایر، ملایر، ایران.
3 استادیار گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی.
چکیده
با توجه به اهمیت اسیدهای چرب موجود در مغز بادام میزان اسیدهای چرب والدین پدری و نتاج حاصل از تلاقی والد مادری شاهرود 12 با والدین گرده‏دهنده انتخابی با استفاده از گاز کرماتوگرافی مورد بررسی قرار گرفت. همچنین استخراج روغن به وسیله دستگاه سوکسله و اندازه گیری عناصر به روش جذب اتمی در والدین و نتاج حاصل از تلاقی­ها اندازه‏گیری شد. برخی صفات کمی و کیفی مربوط به خشک میوه و مغز بادام نیز مورد تجزیه و تحلیل قرار گرفت. نتایج بدست آمده نشان داد که بالاترین میزان وزن مغز در نتاج حاصل از تلاقی های انجام شده، مربوط به گرده­افشانی آزاد بود، بیشترین مقدار اسیداولئیک (18:1) و اسیدلینولئیک (18:2) به‏ترتیب در والدین پدری MSK84 به‏میزان 51/75 % و شاهرود 14 به‏میزان 20/19 % مشاهده گردید. همچنین بیشترین میزان اسیداولئیک در نتاج حاصل از تلاقی والد مادری شاهرود 12 با والد پدری شاهرود 14 به‏میزان 72% به‏دست آمد. بالاترین میزان اسیدلینولئیک با40/18 % در نتاج حاصل از تلاقی والد مادری شاهرود 12 با والد پدری MSK84 حاصل شد. از طرفی بیشترین میزان اسیدپالمیتیک نیز در نتاج حاصل از گرده‏افشانی آزاد والد مادری شاهرود 12 به‏میزان 50/9 % مشاهده شد. این سه نوع اسید چرب بیشترین درصد را در بین هفت اسید چرب اندازه‏گیری شده در مغز بادام به خود اختصاص دادند. بیشترین مقدار روغن در نتاج حاصل از تلاقی والد مادری شاهرود 12 با والد پدری MSK82 به ‏میزان 42/54 و کمترین مقدار در والد پدری MSK83 به‏میزان 32/38 درصد مشاهده شد همچنین نتایج به‏دست آمده نشان داد که در بین والدین و نتاج حاصل از تلاقی ها میزان عناصر آهن (53/138-48/85 میلی گرم در 1000 گرم)، مس (48/47-32/20 میلی گرم در 1000 گرم) و منگنز (67/44-04/18 میلی گرم در 1000 گرم) بودند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of pollen type on the morphological traits,level of fatty acids, oils and some progeny elements from a controlled cross of almond cultivar Shahrood 12

نویسندگان English

Ali Jafari Taeme 1
Mousa Rasouli 2
Mostafa Rahmati-Joneidabad 3
1 MSc. Student of Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
2 Associate Professor of Horticulture Science and Landscape Department, Faculty of Agriculture, Malayer University, Malayer, Iran.
3 Assistant Professor of Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
چکیده English

Almond (Prunus dulcis L.) is one of the most important nut fruits and products, which is commercially grown in vast areas of the world. Almond kernel contains valuable compounds including vitamins, carbohydrates (fiber and soluble sugars), protein, fatty acids and mineral salts. Considering the importance of fatty acids in almonds. this study investigated the fatty acid content of pollen and seed parents and offspring of Shahrood 12 with selective pollinizers using Gas chromatography (GC). Also oil extraction by Soxhlet Elements were measured by atomic absorption method in parents and progeny of crosses. Some quantitative and qualitative traits related to dried fruit and almond kernels were also analyzed. The results showed that the highest amount of kernels weight in progeny obtained from crosses was related to free pollination. The results showed that the highest amount of oleic acid (18: 1) and linoleic acid (18: 2) was observed in MSK84 (75.51%) and shahrood14 (19.20%) pollinizers, respectively. Also, the highest amount of oleic acid with 72% was obtained in the offspring of Shahrood 12 (♀) × Shahrood 14(♂). The maximum amount of linoleic acid was obtained with 18.40% in the offspring resulting from Shahrood 12 (♀) × MSK84 (♂). On the other hand, the highest amount of palmitic acid (9.5%) was found in the progeny obtained from open pollination of Shahrood 12. These three types of fatty acids have the highest percentage among the seven fatty acids measured in the almond kernel. The highest amount of oil was obtained in progeny of mother Shahrood 12 with 54.42% MSK82 and 38.32% in MSK83 also The results showed that among the different genotypes Rate of oil (38.32-54.42%), Iron (85.48-138.53 mg / 1000 g), Copper (20.32-47.48 mg / 1000 g), Manganese (18.04 -44.67 mg / 1000 g).

کلیدواژه‌ها English

Fatty acids
Oleic acid
Almond
Oil percentage
Controlled pollination
[1] López-Higuera, F. D., Hernández, T. B., Caballero, J. E., García, J. E. G. (1996). Programa de mejora del almendro del CEBAS (CSIC-MURCIA). Fruticultura profesional, (81), 64-70.
[2] Chaychi, S., Hassanzadeh, N., Mashhadi Jafarloo, M., Bybordi, A. (2002). Almond Manual: Agricultural Research and Education Organization, Ministry of Jihad-e Agriculturre, Pp.172.
[3] Kester, D. E., Gradziel, T. M., Grasselly, C. (1991). Almonds (Prunus). Genetic Resources of Temperate Fruit and Nut Crops, 290, 701-760.
[4] FAO. (2017). FAOSTAT database results. http://faostat.Fao.org.faostat. Servlet.
[5] Kornsteiner, M., Wagner, K. H., Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. Food chemistry, 98(2), 381-387.
[6] Socias i Company, R., Kodad, O., Alonso, J. M., Gradziel, T. M. (2007). Almond quality: a breeding perspective. Horticultural Reviews, 34, 197-238.
[7] Ahmad, Z. (2010). The uses and properties of almond oil. Complementary Therapies in Clinical Practice, 16(1), 10-12.
[8] Duke, J. (2001). Almond (prunus dulcis). In: Handbook of Nuts. (Second Pub), CRC press, Boca Raton, Florida, USA.pp:249-252.
[9] Schirra, M. (1997). Postharvest technology and utilization of almonds. Horticultural Reviews, 20, 267-311.
[10] Grundy, S. M., Florentin, L., Nix, D., Whelan, M. F. (1988). Comparison of monounsaturated fatty acids and carbohydrates for reducing raised levels of plasma cholesterol in man. The American journal of clinical nutrition, 47(6), 965-969.
[11] Bonvehí, J. S., Coll, F. V. (1993). Oil content, stability and fatty acid composition of the main varieties of Catalonian hazelnuts (Corylus avellana L.). Food Chemistry, 48(3), 237-241.
[12] Okay, Y. (2002). The composition of some pistachio cultivars regarding their fat, fatty acids and protein content. Gartenbauwissenschaft, 67 (3): 107-113.
[13] Venkatachalam, M., Sathe, S. K. (2006). Chemical composition of selected edible nut seeds. Journal of agricultural and food chemistry, 54(13), 4705-4714.
[14] Dogan, M., Akgul, A. (2005). Fatty acid composition of some walnut (Juglans regia L.) cultivars from east Anatolia. Grasas y aceites, 56(4), 328-331.
[15] Soler, L., Canellas, J., Saura-Calixto, F. (1988). Oil content and fatty acid composition of developing almond seeds. Journal of Agricultural and Food Chemistry, 36(4), 695-697.
[16] Jaceldo-Siegl, K., Sabaté, J., Batech, M., Fraser, G. E. (2011). Influence of body mass index and serum lipids on the cholesterol-lowering effects of almonds in free-living individuals. Nutrition, Metabolism and Cardiovascular Diseases, 21, S7-S13.
[17] Piccirillo, P., Fasano, P., Mita, G., De Paolis, A., Santino, A. (2004, November). Exploring the role of lipoxygenases on walnut quality and shelf-life. In V International Walnut Symposium, 705 (pp. 543-545).
[18] Neamtu, G., Campeanu, Gh., Socaciu, C. (1995). Mineral Metabolism (Metabolismul mineral), p. 243-271. In: Biochimie vegetala. (Eds.). Did. Ped. Bucuresti.
[19] Vallee, B. L., Falchuk, K. H. (1993). The biochemical basis of zinc physiology. Physiological reviews, 73(1), 79-118.
[20] Xu, Z., Yoon, J., Spring, D. R. (2010). Fluorescent chemosensors for Zn2+. Chemical Society Reviews, 39(6), 1996-2006.
[21] Ding, Y., Luo, Y., Fu, J. (2014). Effects of Mn (II) on peroxynitrite nitrifying fibrinogen. Bio-medical materials and engineering, 24(1), 901-907.
[22] Bahmani, A., Girigorian, V., Valizadeh, M., Vazvaei, A. (2002). Effect of pollen type and nature on fruit size and certain tasting characteristics of almond kernel. Iranian Journal of Agriculture Science, 33(2), 289-296.
[23] Riazi, G., Rahemi, M., Khanizadeh, S. (1996). Effect of selected pistachio pollen on development and quality of pistachio nuts of three commercially grown cultivars. Journal of plant nutrition, 19(3-4), 635-641.
[24] Kunar. K., Dos, B. (1996). Studies on xenia and methaxenia in almond. Journal scienta Horticulture, 71(4), 545 – 549.
[25] Rasouli, M., Fatahomoghadan, M., Zamani, Z., Eimani, A., Ebadi, A. (2010). Study of the Compatibility and the Effects of Supplementary Pollination with Different Pollens on Fruit Set of Self-Compatible Almond 'Supernova'', Iranian Journal of Horticultural Science, 40(4),61-70[In Persian].
[26] Rasouli, M., Fattahi Moghaddam, M. R., Imani, A., Zamani, Z., & Martínez-Gómez, P. (2018). Identification of DNA Markers Linked to Blooming Time in Almond. Journal of Nuts, 9(2), 105-122.
[27] Golzari, M., Rahemi, M., Hassani, D., Vahdati, K., Mohamadi, N. (2013). Investigating adoption component of agricultural organic products from the viewpoints of consumers (A case study in Karaj County). Food Science and Technology, 10 (38), 33-43[In Persian].
[28] Bannon, C.D., Craske, J.D., Hai., N.T, Hai, N.L., Happer, N.L., O’Rourke.K.L. (1982). Analysis of Fatty Acid Methyl esters with High Accuracy and Reliability: Methylation of Fats and Oils with Boron Trifluoride-Methanol. Journal of Chromatography A, 247, 63-69.
[29] Gonzalez, S., Duncan, S. E., O’Keefe, S. F., Sumner, S. S., Herbein, J. H. (2003). Oxidation and textural characteristics of butter and ice cream with modified fatty acid profiles. Journal of Dairy Science, 86(1), 70-77.
[30] Chapman, H. D., Pratt, P.F. (1982). Methods of Analysis for Soils, Plants and Waters. Division of Agriculture, University of California, Berkeley, CA. 4034p.
[31] Mohamadpour, N. (2018). Study of genetic diversity of some almond genotypes using morphological markers and pollination of Shahrood12 as seed parent with selective pollinizer in condition of Kermanshah, Malayer University, 110page.
[32] Wallace, H. M. (2003). Genetic and environmental control of quality in subtropical fruit and nut crops. XXVIth International horticulture symposium on citrus and other subtropical and tropical fruit crops,1120 – 1140.
[33] Rasouli, M., Fattahi Moghadam, M., Zamani, Z., imani, A., Ebadi, A. (2012). A Study ot the Phenotypic Diversity of some Almond Cultivars and Genotypes, using Morphological Traits. Iranian Journal of Horticultural Science, 43(4), 357-370[In Persian].
[34] Momenpour, A., Ebadi, A., Imani, A. Javanmard, T. (2011). Determination and evaluation of superior self-compatible almond genotypes resulting from crosses between “Touno” and “Ferragnes” in Iran. African Journal of Agricultural Research, 6(26), 5680-5693.
[35] Afshari, H., Talaei, A.R. and Sadeghi, Gh. (2009) “A study of some of the commponents in the pistachia nut and the effect of pollen grains on quantitive and qualitative traits of them”, Journal of horticulture science, 22(2), 13-24[In Persian].
[36] Kodad, O., Alonso, J. M., Espiau, M. T., Estopañán, G., Juan, T. (2011). Chemometric characterization of almond germplasm: compositional aspects involved in quality and breeding. Journal of the American Society for Horticultural Science, 136(4), 273-281.
[37] Moayedi, A., Rezaei., K, Moini, S., Keshavarz, B. (2011). Chemical compositions of oils from several wild almond species. Journal of the American Oil Chemists' Society, 88(4), 503-508.
[38] Amaral, J. S., Casal, S., Pereira, J. A., Seabra, R. M., Oliveira, B. P. (2003). Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnuts (Juglans regia L.) cultivars grown in Portugal. Journal of Agricultural and Food Chemistry, 51(26), 7698-7702.
[39] Waterhouse, P. M., Wang, M. B., Lough, T. (2001). Gene silencing as an adaptive defence against viruses. Nature, 411(6839), 834-842.
[40] Jaceldo-Siegl, K., Sabaté, J., Batech, M., Fraser, G. E. (2011). Influence of body mass index and serum lipids on the cholesterol-lowering effects of almonds in free-living individuals. Nutrition, Metabolism and Cardiovascular Diseases, 21, S7-S13.
[41] Piravi-Vanak, Z., Ghasemi, J. B., Ghavami, M., Ezzatpanah, H., Zolfonoun, E. (2012). The influence of growing region on fatty acids and sterol composition of Iranian olive oils by unsupervised clustering methods. Journal of the American Oil Chemists' Society, 89(3), 371-378.
[42] Rasouli, M., Imani, A. (2016). Effect of supplementary pollination by different pollinizers on fruit set and nut physicochemical traits of ‘Supernova’, a self-compatible almond. Fruits, 71(5), 299-306.
[43] Ak, B. E., Kaska, N. (1998). Determination of viability and germination rates of pistacia spp. Pollen kept for artificial pollination. Acta Horticulturae,470, 300-306.
[44] Agar, I. T., Kafkas, S., Kaska, N. (1997, August). Lipid characteristics of Turkish and Iranian pistachio kernels. In II International Symposium on Pistachios and Almonds 470 (pp. 378-386).
[45] Edlund, A. F., Swanson, R., & Preuss, D. (2004). Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell, 16(suppl 1), S84-S97.
[46] Letchworth, M. B., Lambert, R. J. (1998). Pollen parent effects on oil, protein, and starch concentration in maize kernels. Crop Science, 38(2), 363-367.
[47] Lambert, R. J., Alexander, D. E., Han, Z. J. (1998). A high oil pollinator enhancement of kernel oil and effects on grain yields of maize hybrids. Agronomy Journal, 90(2), 211-215.
[48] Aslan, M., Orhan, I., Şener, B. (2002). Comparison of the seed oils of Pistacia vera L. of different origins with respect to fatty acids. International journal of food science & technology, 37(3), 333-335.
[49] Çaǧlarırmak, N. (2003). Biochemical and physical properties of some walnut genotypes (Juglans regia L.). Food/Nahrung, 47(1), 28-32.