مقایسه اثربخشی دو پری‌بیوتیک اینولین و آرد موز سبز بر زنده‌مانی باکتری‌های لاکتوباسیلوس پلانتاروم و باسیلوس کواگولانس در ماست سین‌بیوتیک کم‌کالری

نویسندگان
گروه علوم و مهندسی صنایع غذایی، واحد فسا، دانشگاه آزاد اسلامی، فسا، ایران
چکیده
امروزه ماست به عنوان مهم­ترین فرآورده لبنی پروبیوتیک در سرتاسر دنیـا تولیـد و بـه بـازار عرضـه مـی­گـردد. ترکیب پری­بیوتیک به همراه پروبیوتیک، سـین­بیوتیـک نامیده می­شود که اثرات سودمندتری بر سلامت میزبان می­گذارد. هدف از این پژوهش مقایسه اثر اینولین و آرد موز سبز روی ویژگی­های ماست سین­بیوتیک در طی 28 روز نگهداری در دمای یخچال است. اینولین و آرد موز سبز در سطوح 2% در ماست سین­بیوتیک حاوی لاکتوباسیلوس پلانتاروم و باسیلوس کواگولانس مورد استفاده قرار گرفت و با ماست شاهد (پروبیوتیک) مقایسه شد. نتایج نشان داد با افزایش زمان نگهداری اسیدیته کلیه تیمارها افزایش و مقدار pH کاهش یافت. افزودن اینولین و آرد موز سبز سبب افزایش اسیدیته و در نتیجه کاهش pH در نمونه­های سین­بیوتیک شده اما تفاوت معنی­داری بین دو پری­بیوتیک مورد استفاده مشاهده نشد. مقدار ماده خشک نیز در تیمارهای سین­بیوتیک نسبت به تیمارهای شاهد به طور معنی­داری بیشتر بود (05/0P<). حضور هر دو ترکیب پری­بیوتیک تاثیر مثبتی روی قابلیت زنده­مانی باکتری­های پروبیوتیک در ماست داشت که تاثیر اینولین روی بقاء باکتری لاکتوباسیلوس پلانتاروم بیشتر از آرد موز سبز بود اما در مورد باسیلوس کواگولانس تفاوت معنی­داری بین دو پری­بیوتیک مورد مطالعه مشاهده نشد. شمارش تعداد لاکتوباسیلوس پلانتاروم و باسیلوس کواگولانس بیشتر از حد توصیه شده Log cfu/g 6 در تمامی نمونه­های ماست سین­بیوتیک در دوره نگهداری به مدت 4 هفته بدست آمد. بقا و زنده­مانی باسیلوس کواگولانس نسبت به لاکتوباسیلوس پلانتاروم بیشتر بود. با توجه به نتایج این تحقیق می­توان گفت که آرد موز سبز خاصیت پری­بیوتیکی داشته و در حفظ زنده­مانی باکتری پروبیوتیک موثر است، بنابراین می­توان نتیجه­گیری کرد که این ترکیب پتانسیل بالایی برای استفاده در غذاهای فراسودمند دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of the effectiveness of two prebiotics inulin and green banana flour on the survival of Lactobacillus plantarum and Bacillus coagulans in low-calorie synbiotic yogurt

نویسندگان English

Mohammad Mehdi Jokari
Dornoush Jafarpour
Department of Food Science and Technology, Fasa Branch, Islamic Azad University, Fasa, Iran
چکیده English

Today, yogurt is produced as the most important probiotic dairy product worldwide and marketed. The combination of prebiotics with probiotics is called synbiotics, which have more beneficial effects on host health. This study was performed to compare the effect of inulin and green banana flour on the properties of synbiotic yogurt during 28 days of refrigerated storage. Inulin and green banana flour were used at 2% levels in synbiotic yogurt containing Lactobacillus plantarum and Bacillus coagulans and compared with control (probiotic) yogurt. The results showed that with increasing storage time, the acidity of all treatments increased and the pH value decreased. Addition of inulin and green banana flour increased the acidity and decreased the pH in the synbiotic samples, but no significant difference was observed between the two prebiotics used. Dry matter content in synbiotic treatments was significantly higher than control treatments (P <0.05).The presence of both prebiotic compound had a positive effect on the survival capability of probiotic bacteria in yogurt. The effect of inulin on the survival of Lactobacillus plantarum was greater than of green banana flour, but in treatment of Bacillus coagulans there was no significant difference between the two prebiotics. Count of Lactobacillus plantarum and Bacillus coagulans was higher than the recommended limit of 6 Log cfu /g in all samples of synbiotic yogurt during storage for 4 weeks. Survival of Bacillus coagulans were higher than Lactobacillus plantarum. According to the results of this study, it can be said that green banana flour has pre-biotic properties and is effective in maintaining the survival of probiotic bacteria, so it can be concluded that this combination has a high potential for use in healthy foods.

کلیدواژه‌ها English

Lactobacillus plantarum
Bacillus coagulans
Yogurt
Green banana flour
Inulin
[1] Aziznia, S., Khosrowshahi, A., Madadlou, A. & Rahimi, J. (2008). Whey protein concentrate and gum Tragacanth as fat replacers in nonfat yogurt: Chemical, physical, and microstructural properties. Journal of Dairy Science, 91, 2545-2552.
[2] Shori, A. B. & Baba, A. S. (2011). Antioxidant activity and inhibition of key enzymes linked to type-2 diabetes and hypertension by Azadirachta indica-yogurt. Journal of Saudi Chemical Society, In press.
[3] Sahan, N., Yasar, K. & Hayaloglu, A. A. (2008). Physical, chemical and flavour quality of nonfat yogurt as affected by a β-glucan hydrocolloidal composite during storage. FoodHydrocolloids, 22(7), 1291 -1297. [4] Milanović, S. D., Carić, M. Đ., Đurić, M.S., Iličić, M. D. & Duraković, K. G. (2007). Physico-chemical properties of probiotic yoghurt produced with transglutaminase. APTEFF, 38, 45-52.
[5] Oliveira, R. P. S., Perego, P., Oliveira, M. N. & Converti, A. (2011). Effect of inulin as prebiotic and synbiotic interactions between probiotics to improve fermented milk firmness. Journal of Food Engineering, 107, 36-40.
[6] Marafon, A. P., Sumi, A., Alcântara, M. R., Tamime, A. T. & Oliveira, M. N. (2011). Optimization of the rheological properties of probiotic yoghurts supplemented with milk proteins. LWT-Food Science and Technology, 44, 511-519.
[7] Donkor, O. N., Nilmini, S. L. I., Stolic, P., Vasiljevic, T. & Shah, N. P. (2007). Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. International Dairy Journal, 17, 657-665.
[8] Burgain, J., Gaiani, C., Linder M. & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104, 467-483.
[9] Aragon-Alegro, L. C., Alegro, J. H. A., Cardarelli, H. R., Chiu, M. C. & Saad, S. M. I. (2007). Potentially probiotic and synbiotic chocolate mousse. LWT-Food Science and technology, 40(4), 669-675.
[10] Arcia, P. L., Costell, E. & Tárrega, A. (2010). Thickness suitability of prebiotic dairy desserts: Relationship with rheological properties. Food Research International, 43(10), 2409-2416.
[11] Tribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Perez, L. A. & Tadini, C. C. (2009). Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT-Food Science and Technology, 42(5), 1022-1025.
[12] Agama-Acevedo, E., Islas-Hernández, J. J., Pacheco-Vargas, G., Osorio-Díaz, P. & Bello-Pérez, L. A. (2012). Starch digestibility and glycemic index of cookies partially substituted with unripe banana flour. LWT-Food Science and Technology, 46(1), 177-182.
[13] Fadiheh, M.T., Najafi, M.N. & Sani, A.M. (2013). Evaluating survival of Lactobacillus acidophilus in synbiotic concentrated yogurt via response surface method (RSM). Journal of Innovation in Food Science and Technology, 5(2).
[14] Aghajani, A.S., Pourahmad, R. & Mahdavi, H.D. (2014). The effect of oligofructose, lactulose and Inulin mixture as prebiotic on physicochemical properties of synbiotic yogurt. Journal of Food Biosciences and Technology, 4(2), 33-40.
[15] Akalin, A.S. & Erisir, D. (2008). Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream. Journal of Food Science, 73(4), 184-188.
[16] Institute of Standards and Industrial Research of Iran. Probiotic yogurt-Specifications and test methods. ISIRI no 11325. Karaj: ISIRI; 2018. [in Persian]
[17] Hashemi, M., Gheisari, H. & Shekarforoush, S. (2013). Survival of Lactobacillus acidophilus and Bacillus coagulance in probiotic and low-fat synbiotic ice-creams. Journal of Food Hygiene, 3(3 (11)), 57-65. [in Persian]
[18] Isa, J. K. & Razavi, S. H. (2017). Characterization of Lactobacillus plantarum as a potential probiotic in vitro and use of a dairy product (yogurt) as food carrier. Applied Food Biotechnology, 4(1), 11-18.
[19] Ziaei, S., Eskandari, M. H., Amani, E. & Shad, E. (2013). Production of low fat probiotic yogurt using Bacillus coagulans and study of its physicochemical and microbial properties. 21st National Congress of Food Science and Technology of Iran. [in Persian]
[20] Institute of Standards and Industrial Research of Iran. Milk and milk products Determination of titrable acidity and value pH Test method. ISIRI no 2852. Karaj: ISIRI; 2007. [in Persian]
[21] Institute of Standards and Industrial Research of Iran. Yoghurt-Specifications and test methods. ISIRI no 695. Karaj: ISIRI; 2019. [in Persian]
[22] Mortazavian, A.M., Sohrabvandi, S. (2006) . Probiotics and food probiotic products; based on dairy probiotic products. Eta, Tehran.
[23] Tayebi Moghaddam, S. & Ehsani, M. (2020). Comparison of the effect of extracted inulin from native chicory root with commercial inulin on the viability of probiotics and physicochemical, rheological and sensory properties of synbiotic yogurt. Iranian Journal Of Food Science and Technology, 17(99 ), 91-110. [in persian]
[24] Akin, M. B., Akın, M. S. & Kırmacı, Z. (2007). Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice-cream. Food chemistry, 104(1), 93-99.
[25] Guggisberg, D., Cuthbert-Steven, J., Piccinali, P., Bütikofer, U. & Eberhard, P. (2009). Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. International Dairy Journal, 19(2), 107-115.
[26] Oliveira, R. P. S., Perego, P., Converti, A. & De Oliveira, M. N. (2009). Effect of inulin on growth and acidification performance of different probiotic bacteria in co-cultures and mixed culturewith Streptococcus thermophilus. Journal of Food Engineering, 91, 133–139.
[27] Mehmood, S. T., Masud, T., Mahmood, T. & Maqsud, S. (2008). Effect of different additives from local source on the quality of yoghurt. Pakistan Journal of Nutrition, 7(5), 695-699.
[28] Sahan, N., Yasar, K. & Hayaloglu, A. A. (2008). Physical, chemical and flavour quality of non-fat yogurt as affected by a β-glucan hydrocolloidal composite during storage. Food Hydrocolloids, 22, 1291-1297.
[29] Jaros, C. (2002). Influence of the starter culture on the relationship between dry matter and physical properties of set-style yogurt. Milchwiss. Milk Science International, 57, 325-328.
[30] Nekoueian, M. (2020). Feasibility study of Production of synbiotic low calorie yoghurt by greenbanana flour and evaluation of physicochemical, textural and sensorialcharacteristics of it. M. Sc. Thesis
[31] Nikbakht kashkouli, T., Jooyande, H. & Tahmoozi Dideban, S. (2017). Evaluating physicochemical and microbial properties of synbiotic yogurt using Response surface methodology, Electronic Journal of Food Processing and Preservation, 9, 50-33.
[32] Mortazavian, A. M., Khosrokhavar, R., Rastegar, H. & Mortazaei, G. R. (2010). Effects of dry matter standardization order on biochemical and microbiological characteristics of freshly made probiotic Doogh (Iranian fermented milk drink). Italian Journal of Food Science, 22(1).
[33] Pan, X., Chen, F., Wu, T., Tang, H. & Zhao, Z. (2009). The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control, 20(6), 598-602.
[34] Martin, F., Cachon, R., Pernin, K., De Coninck, J., Gervais, P., Guichard, E. & Cayot, N. (2011). Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt. Journal of Dairy Science, 94(2), 614-622.
[35] Donkor, O. N., Henriksson, A., Vasiljevic, T. & Shah, N. P. (2006). Effect of acidification on the activity of probiotics in yoghurt during cold storage. International Dairy Journal, 16(10), 1181-1189.
[36] Sarrela, M., Mogensen, G., Fonden, R., Matto, J. & Mattila-Sandholm, T. (2000). probiotic bacteria in functional food. Journal of Biotechnology, 84, 197-205.
[37] Gustaw, W., Kordowska-Wiater, M. & Kozioł, J. (2011). The influence of selected prebiotics on the growth of lactic acid bacteria for bio-yoghurt production. Acta Scientiarum Polonorum Technologia Alimentaria, 10(4).
[38] Oliveira, R. P. S., Oliveira, P. P. M. N. & Converti, A. (2012). Prebiotic Effect of Inulin on the Growth and Organic Acid Profile of Bifidobacterium lactis in Coculture with Streptococcus thermophiles. Chemical Engineering Transactions, 27, 1-6.
[39] Ashrafi Yorghanloo, R. & Mehryar, L. (1398). The effect of adding inulin and galactovoligosaccharide on the survival of Lactobacillus casei microencapsulated in apple-apricot hybrid juice. Innovation in Food Science and Technology (Food Science and Technology), 11(1), 145-158.
[40] Golestani, M., Pourahmad, R. & Mahdavi Adeli, H. (2016). The effect of inulin on the viability of probiotic bacteria and the physical, chemical and sensory characteristics of fremented and non-fremented synbiotic ice cream. Journal of Food Technology and Nutrition, 13(3 (51)), 25-32.
[41] Adibpour, N., Hosseininezhad, M. & Pahlevanlo, A. (2019). Application of spore-forming probiotic Bacillus in the production of Nabat-A new functional sweetener. LWT - Food Science and Technology, 113, 108277.
[42] Majeed, M., Majeed, S., Nagabhushanam, K., Natarajan, S., Sivakumar, A. & Ali, F. (2016). Evaluation of the stability of Bacillus coagulans MTCC 5856 during processing and storage of functional foods, International Journal of Food Science &Technology. 51(4), 894-901.
[43] Majeed, M., Majeed, S., Nagabhushanam, K., Arumugam, S., Beede, K. & Ali, F. (2018). Evaluation of probiotic Bacillus coagulans MTCC 5856 viability after tea and coffee brewing and its growth in GIT hostile environment. Food Research International, 121, 497-505.
[44] Zacarchenco, P. B. & Massaguer-Roig, S. (2006). Properties of Streptococcus thermophilus fermented milk containing variable concentrations of Bifidobacterium longum and Lactobacillus acidophilus. Brazilian Journal of Microbiology, 37(3), 338-344.
[45] Rajabpour Nikoo, E., Mansouripour, S. & Hamedi, J. (2020). Feasibility study of producing and evaluation the quality properties of probiotic and synbiotic jelly containing Bacillus coagulans. Journal of Food Microbiology, 7(2), 34-43. [in persian]
[46] Ganjoori, M., Mehrabian, S. & Akhavan Sepahi, A. (2012) Enrichment breads, using of potential probiotic bacillus(Bacillus coagolans). Journal of Biotechnology. 3(1), 37-46. [in persian]
[47] Glibowski, P. & Kowalska, A. (2012). Rheological, texture and sensory properties of kefir with high performance and native inulin. Journal of Food Engineering, 111(2), 299– 304.
[48] Scarminio, V., Fruet, A. C., Witaicenis, A., Rall, V. L. D. i. & Stasi, L. C. (2012). Dietary intervention with green dwarf banana four (Musa sp. AAA) prevents intestinal infammation in a trinitrobenzenesulfonic acid model of rat colitis. Nutrition Research, 32(3), 202–209.
[49] Almeida-Junior, L., Curimbaba, T., Chagas, A., Quaglio, A. & Di Stasi, L. (2017). Dietary intervention with green dwarf banana four (Musa sp. AAA) modulates oxidative stress and colonic SCFAs. production in the TNBS model of intestinal infammation. Journal of Functional Foods, 38, 497–504.
[50] Rabbani, G., Larson, C., Islam, R., Saha, U. & Kabir, A. (2010).Green banana-supplemented diet in the home management of acute and prolonged diarrhoea in children: a community-based trial in rural Bangladesh. Tropical Medicine& International Health, 15(10), 1132–1139.
[51] Vogado, C. d. O., Leandro, E. d. S., Zandonadi, R. P. d. e., Alencar, E. R., Ginani, V. C., Nakano, E. Y., Habú, S. & Aguiar, P. A. .(2018). Enrichment of probiotic fermented milk with green banana pulp: characterization microbiological. Nutrients, 10(4), 427.
[52] Dos Santos Alves, L. A. A., Lorenzo, J. M., Gonçalves, C. A. A., Dos Santos, B. A., Heck, R. T., Cichoski, A. J. & Campagnol, P. C. B. (2016). Production of healthier bologna type sausages using pork skin and greenbanana four as fat replacers. Meat Science, 121, 73–78.
[53] Yangılar, F. (2015). Efects of green banana flour on the physical, chemical and sensory properties of ice cream. Food Technology and Biotechnology, 53(3), 315.